Bu sitede bulunan yazılar memnuniyetsizliğiniz halınde olursa bizimle iletişime geçiniz ve o yazıyı biz siliriz. saygılarımızla

    kuantum mekaniğinin gelişimine dair seçeneklerde verilen ifadelerden hangisi yanlıştır

    1 ziyaretçi

    kuantum mekaniğinin gelişimine dair seçeneklerde verilen ifadelerden hangisi yanlıştıri bilgi90'dan bulabilirsiniz

    Kuantum mekaniğinin gelişimine dair seçeneklerde verilen ifadelerden hangisi yanlıştır

    10 Maddede ‘Kuantum Mekaniği’

    10 maddede Kuantum Mekaniğini tüm derinliği ve detaylarıyla açıklayamayacağımızın farkındayız. Ancak; merak edenler ve yüzeysel de olsa bilgi sahibi olmak isteyenler için genel hatlarıyla Kuantum Mekaniğini anlatmaya çalıştık.

    Siz de yorumlarınızla listeyi genişletebilir, konu hakkında daha detaylı bilgi verebilirsiniz.

    Kuantum Nedir?

    Kuantum; anlamı ‘ne kadar, ne büyüklükte’ olan, Latince ‘quantus’ sözcüğünden, mekanik ise ‘bir şeyin çalışma prensibi’ anlamına gelen İngilizce ‘mechanics’ sözcüğünden gelir.

    Modern bilimin ve teknolojinin açıklanmasında ve geliştirilmesinde büyük bir rolü olan klasik fizik, maddeyi ve gözle görülür seviyedeki enerjiyi insan deneyleriyle açıklamıştır. Fakat 19. yüzyılın sonralarına yaklaşıldığında klasik fizik ile açıklanamayan mikro ve makro evrenler keşfedilmeye başlanmıştır. Işık ve atomların davranışlarını açıklayamayan klasik fiziğin sınırları bu şekilde anlaşılmıştır. Görelilik Kuramının ve Kuantum Mekaniğinin ortaya çıkışı bu sınırları kaldıracak devrim niteliğindeki keşiflerdir.

    Kuantum mekaniğinin ortaya çıkışı, 1900 yılında Max Planck’ın, Nobel Ödüllü keşfi, radyasyonun kuanta olarak isimlendirdiği paketler halinde yayıldığını veya emildiğini göstermesi kabul edilir.

    ‘Enerji birbirinden bağımsız birimlerle (enerji paketleri) ki bunlara kuantumlar diyoruz, bir yerden ötekine taşınabilir. Bu durumuyla enerji sürekli değildir. Enerji ‘kuantize’ olmuştur.’

    Max Planck

    Kuantum mekaniğinin ortaya çıkışına dair önemli ikinci kilometre taşı ise Einstein’a Nobel Ödülü kazandıran, 1905 yılında Planck’ın çalışmasından yola çıkarak ışığın kuanta veya foton olarak isimlendirilen paketler halinde taşındığını öne süren çalışmasıdır.


    Kuantum Mekaniğindeki önemli tarihsel gelişmeler şu şekilde sıralanabilir;

    Kuantum mekaniğinin tarihsel gelişim sürecini özetleyecek olursak;

    Nicem ya da Dalga Mekaniği isimleriyle de anılan kuantum mekaniği; madde ve ışığın, atom ve atom altı seviyelerde enerji etkileşimlerini ve davranışlarını inceler.Moleküllerin, atomların ve bunları oluşturan parçacıklar ölçeğinde bu parçacıkların birbiriyle; ışık ve elektromanyetik radyasyonlarla olan ilişkisini ve davranışlarını açıklar.

    Mikroskobik dünyaları modelleyen bir kuram olsa da kuantum mekaniğinin uygulama alanı oldukça geniştir. Malzeme biliminden biyolojiye ve elektroniğe kadar çok sayıda alanın gelişmesine katkıda bulunan kuantum mekaniğinden; nükleer kimya ve fizik, parçacık fiziği ve kimyası, plazma kimyası ve fiziği, sıvı hal ve katı hal kimyası, sıvı hal ve katı hal fiziği, kuantum fiziği ve kuantum kimyası gibi çok sayıda uygulamalı fizik ve kimya dalları ortaya çıkmıştır.

    Modern kimyanın ortaya çıkmasını sağlayan kuantum mekaniği; lazer, yarı iletkenler, transistor, elektron mikroskobu, taramalı tünellemeli mikroskop, manyetik direnç uygulamaları ve nanoteknolojik uygulamalar gibi pek çok keşfin ve icadın ortaya çıkmasında da büyük bir öneme sahiptir.

    Kuantum mekaniği ile klasik mekanik, mikroskobik evrenden makroskopik evrene yaklaşırken bir araya gelir. Bu, Correspondance Principle, yani Karşılığı Bulunma İlkesi olarak tanımlanır.

    Kuantum mekaniğinin Belirsizlik İlkesi, bir parçacığın konumunun ve momentumunun belirli bir hassasiyet noktasından daha ileri seviyede bir hassasiyetle ölçülemeyeceğini açıklamaktadır. Bu özellik, klasik fizikte söz konusu değildir.

    1927 yılında, Heisenberg’in formüle ettiği Belirsizlik İlkesinin ardından kuantum mekaniğinin temellerinde hiçbir değişiklik olmamıştır. Ortaya çıkışından itibaren temel ilkeleri büyük tartışmalara yol açan kuantum mekaniğinin, temellerini oluşturduğu teorilerdeki kavramlar, bu temel ilkeler üzerinde değişiklik yapılmasını gerektirmemişlerdir.

    Kuantum Mekaniği Tamamlandı mı?

    Kuantum mekaniğinin tamamlanıp tamamlanmamış olduğu da tartışma konularından biridir. Bu konuya ilişkin olarak Einstein, Podolsky ve Rosen, 1935 yılında, EPR Paradoksu olarak isimlendirilen makalelerinde, bir fizik teorisinin tamamlanmış kabul edilmesi için iki koşul öne sürmüşlerdir: teorinin doğruluğu ve tamamlanmışlığı.

    Bugün, hala önemini koruyan makaleye göre; bir teorinin doğru olarak kabul edilebilmesi için teorinin deney sonuçlarıyla uyumlu olması gerekir. Bu açıdan, kuantum mekaniği doğru kabul edilir.

    Tamamlanmışlığa ilişkin koşul ise, kuramın, her fiziksel gerçekliğe karşılık bir öğe bulundurmasıdır. Makalede gerçeklik; bir fiziksel niceliğin değerini, dinamik sistemi herhangi bir şekilde bozmaksızın kesinlikle tahmin edilebiliyorsa, o zaman, fiziksel gerçekliğin, fiziksel niceliğe karşı olan bir öğesi vardır, olarak tanımlanmıştır. Buna göre, makale, doğru kabul edilen teorinin tamamlanmış olması gerekliliğini ortadan kaldırır.

    Yazı kaynağı : 10layn.com

    Kuantum mekaniği

    Kuantum mekaniği

    Kuantum mekaniği; madde ve ışığın, atom ve atomaltı seviyelerdeki davranışlarını inceleyen bir bilim dalı.[1] "Nicem mekaniği" [2] veya "dalga mekaniği" adlarıyla da anılır.[3] Kuantum mekaniği; moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır.[1] Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik radyasyonlarla olan etkileşimlerini de kapsar.[1]

    İngilizcedeki karşılığı quantum, Latince 'quantus' (ne kadar, ne büyüklükte) sözcüğünden gelir[4] ve kuramın belirli fiziksel nicelikler için kullandığı kesikli birimlere gönderme yapar. İngilizce 'mechanics' sözcüğü ise "bir şeyin çalışma prensibi" anlamına gelir.[5] Kuantum mekaniğinin temelleri 20. yüzyılın ilk yarısında Max Planck, Albert Einstein, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli gibi bilim insanlarınca atılmıştır. Belirsizlik ilkesi, anti madde, Planck sabiti, kara cisim ışınımı, dalga kuramı, Kuantum alan kuramı gibi kavram ve kuramlar bu alanda geliştirilmiş ve klasik fiziğin sarsılmasına ve değiştirilmesine sebep olmuştur.

    Tarihçe[değiştir | kaynağı değiştir]

    Klasik mekanik çok başarılı olmasına karşın, 1800'lü yılların sonlarına doğru, kara cisim ışıması, tayf çizgileri, fotoelektrik etki gibi birtakım olayları açıklamada yetersiz kalmıştır. Açıklamaların yanlışlığı bilim adamlarının yetersizliğinden değil aksine klasik mekaniğin yetersizliğinden kaynaklanıyordu. En yalın halde klasik mekanik evreni bir "süreklilik" olarak modelliyordu. Bazı deneysel gözlemleri açıklayabilmek için 1900 yılında Max Planck enerjinin, 1905 yılında ise Albert Einstein ışığın paketçiklerden oluştuğunu, yani süreksizlik gösterdiği varsayımını kullanmak zorunda kaldılar. Bilim adamları uzunca bir süre, bu süreksizlik varsayımlarını klasik mekanik kuramlarından türetmek için uğraştı. Yine aynı yıllarda, atomun iç yapısı üzerine yapılan deneyler bir gerçeği gözler önüne serdi: Ernest Rutherford yaptığı deneyle atomun küçük bir çekirdeğe sahip olduğunu gösterdi.

    Elektronun varlığı daha önce 1897 senesinde J.J. Thompsonca ispat edilmişti[6]. Bu durumda, eğer negatif yüklü elektronlar pozitif çekirdeğin etrafında dairesel hareket yapıyorlarsa, çok kısa bir zaman diliminde elektronlar çekirdeğe düşeceklerdi. Bunun sebebi, elektromanyetik teoriye göre açıklanabilir: ivmelenen yükler ışıma yapar, dairesel hareket de ivmeli bir hareket olduğu için, elektron bu ışımayla enerji kaybedecek ve çekirdeğe düşecek, güneş sistemine benzeyen klasik model çökecekti.

    Geçici bir çözüm Niels Bohr'dan geldi. Elektronlar belli kuantizasyon kurallarınca, belli yörüngelerde hareket ediyorlar, enerjileri belli bir değere ulaşmadıkça ışıma yapamıyorlar bu sayede sistem dengede durabiliyordu. Bu geçici çözüm küçük atomlarda işe yaradıysa da daha büyük kütlelerde işe yaramıyordu. Bohr atom modeline, modeli deneylere uydurulmak için birçok yama yapıldı. Ne var ki Bohr'un "yamalı bohça"sı 1920'lere gelindiğinde artık iş görmüyordu, tayf çizgilerinin gözlenen yoğunluğunu yanlış veriyor, çok elektronlu atomlarda salınım ve emilim dalgaboylarını tahmin etmede başarısız oluyor, atomik sistemlerin zamana bağlı hareket denklemini vermedeki başarısızlığı gibi birkaç konuda daha gerçekleri gösteremiyordu.

    Kuantum mekaniğini Planck doğurduysa, bebekliğinin sonu da De Broglie ile gelmiştir. Louis de Broglie; birçok elçi, bakan ve Dük yetiştirmiş, aristokrat bir Fransız ailesinin çocuğuydu. Tarih eğitimi gördükten sonra fiziğe geçmiş ve 1923'te verdiği doktora tezinde, ışığın hem dalga hem de parçacık karakteri olmasından esinlenerek, aslında bütün madde çeşitlerinin aynı özelliği gösterebileceğini önerdi. Ortaya koyduğu fikir, Bohr'un "gizemli" yörüngelerini açıklamada başarılı oluyordu.

    Işığın girişim ve kırınım yaptığı, yani dalga özelliği gösterdiği, Thomas Young'in yaptığı çift yarık deneyi ile gösterilmişti. Ancak tüm madde parçacıklarının, su dalgaları ile aynı matematiksel özellikleri gösterebileceği beklenmiyordu.

    Max Planck 1900 yılında kara cisim ışınımı problemini (morötesi facia diye de anılır), çözmek için

    denklemini kullanmıştı. Bu denklem, foton kavramının başlangıcı oldu; çünkü f frekansındaki elektron salınımından oluşan ışığın, klasik mekanikle uyuşmayan bir şekilde, h*f nun sadece tam sayı katlarında kesikli enerjiler (E) taşıyabileceğini varsaymıştı ('h', günümüzde Planck sabiti adıyla anılır). Fotonlar dalga özelliği gösteriyorsa, madde de bu dualiteyi (ikiligi) gösterebilir analojisi çok kuvvetli bir fikir idi. Bunun yanında önemli bir ipucu da Einstein'in birkaç yıl önce özel görelilik ispatında kullandığı Lorentz Dönüşümleri idi.

    Buna göre, serbest bir parçacık, yönü k, konumu x, frekansi f ve zaman bağlılığı t olan bir dalga ile ifade edilirse, 2*π*(k*x - f*t) , ve bu faz Lorentz dönüşümlerinde sabit kalacaksa, k vektörü ve f frekansı, x vektorü ve t zamanı gibi dönüşmelilerdi. Diğer bir deyişle, p ve E gibi. Bunun mümkün olabilmesi için, k ve f, p ve E ile aynı bağımlılığa sahip olmalılardı, bu yüzden de onlarla doğru orantılı olmalılardı.

    Bu şekilde, fotonlar için E=h*f olduğundan, madde için de,

    varsayımlarını yapmak 'doğal' gözükmüştür.

    Bu varsayıma ek olarak, de Broglie, herhangi bir kapalı yörüngenin 1/|k| nın tam katı olması varsayımını da kullanarak, deneysel olarak gözlenen, ve Sommerfeld ve Bohr tarafından "kuantize olma şartları" olarak anılan şartları, matematiksel olarak kolayca türetti. Bu türetme gayet gizemli bir şekilde doğru sonuçlar verince (Davisson ve Germer, 1927 yılında Bell Laboratuvarlarında gerçekleştirdikleri deneyle, elektronların da aynı ışık gibi girişim yaptığını ortaya koydular. Deney 1924'te de Brogli tarafından önerilmişti) insanlar deneysel olarak başka şeyleri tahmin etmesini de beklediler.

    Elbette yanıldılar çünkü bu şartlar serbest ışık parçaları için oluşturulan varsayımların, çekirdeğe bağlı elektronlar için uyarlanmasıydı ve çok ileri götürülmemesi gerekiyordu.

    Ama dalga mekaniği için doğru çıkış noktası idi.

    Enteresan bir şekilde, 1925-1926 yılları arasında Werner Heisenberg, Max Born, Wolfgang Pauli ve Pascual Jordan, matris mekaniği ile kuantum mekaniğinin formal tanımını yaptılar. Ama formalizmlerinde dalga mekaniğine yer vermediler. Benimsedikleri felsefe ise, tamamen pozitivist idi. Yani sadece deneysel olarak gözlenebilen değerleri göz önüne alan bir yaklaşım kullandılar.

    1926 yılında Erwin Schrödinger bir dizi denklemle dalga mekaniğini yeniden canlandırdı. Sonunda kendi dalga mekaniğinden Heisenberg'in matriks mekaniğini de türetip iki formalizmin matematiksel olarak denk olduğunu da gösterdi (son makalelerinden birinde Schrödinger, relativistik bir dalga denklemi de sunar).

    Dirac'a göre ise tarih biraz daha farklı işlemiştir. Ona göre, Schrödinger önce relativistik dalga denklemini geliştirdi, sonra bunu kullanarak hidrojenin spektrumunu hesapladı ve deneylere uymadığını gördü. Ancak bu denklemin, düşük hızlarda geçerli olan versiyonu aslında çalışıyordu, ve bildigimiz Schrodinger dalga denklemine ulaşılıyordu.

    Daha sonra relativistik dalga denklemi Oskar Klein ve Walter Gordon tarafından yayınladı ve hâlâ Klein-Gordon denklemi olarak anılır.

    Bu noktadan sonra Dirac; teoriyi özel görelilikle uyumlu hale getirmiş ve bazı deneylerin sonuçlarını teorik olarak üretmiştir. Örneğin pozitron'un varlığını 1932 senesinde Carl David Anderson kanıtlamıştır ve nobel ile ödüllendirilmiştir[7]. Kuantum teorisi, daha sonra 1940'larda Sin-Itiro Tomonaga, Julian Schwinger ve Richard P. Feynman'ın kuantum elektrodinamiği konusunda önemli çalışmalarıyla gelişimine devam etmiştir. 1950'li ve 60'lı yıllar ise Kuantum renk dinamiğinin gelişimine tanık olmuştur.

    Gelişmeler[değiştir | kaynağı değiştir]

    Klasik mekanik, kuantum mekaniği ve kuantum mekaniği'nin matematiği[değiştir | kaynağı değiştir]

    Klasik mekanik, nesnelerin konum ve momentumları bilgilerini kullanarak, çeşitli kuvvet alanları altında nasıl hareket etmeleri gerektiğini bulmaya çalışır. Kökleri çok eskiye dayansa da başlangıcının Newton'un Principia'sı olduğunu kabul etmek yanlış olmaz. Daha sonra Euler, Lagrange, Jacobi, Hamilton, Poisson, Maxwell, Boltzman (İstatiksel mekanik ve klasik elektromanyetik teori de klasik mekaniğe katılabilir) gibi birçok ad tarafından çok çeşitli bakış açıları geliştirilmiş ve birçok alanda başarılı bir şekilde uygulanmıştır. Klasik mekaniğin tamamlanmasının Einstein'ın görelilik kuramları ile gerçekleştiğini söylemek yanlış olur. Klasik mekanik çok başarılı olmasına karşın, 1800'lü yılların sonlarına doğru, siyah cisim ışıması, tayf çizgileri, fotoelelektrik etki gibi birtakım olayları açıklama da yetersiz kalmıştır. Açıklamaların yanlışlığı bilim adamlarının yetersizliğinden değil aksine klasik mekaniğin yetersizliğinden kaynaklanıyordu. Klasik mekanikteki sorunun ne olduğunu anlatmak aşırı teknik kaçacaktır, ancak en yalın halde klasik mekanik, evreni sürekli olarak modeller ve bu yaklaşım kendi içinde tutarlı değildir. Bunu görmek için termodinamikteki eş-dağılım prensibine ("İngilizceequipartition theorem") bakmalıyız. Üç konum (x, y, z) ve üç momentumla (px, py, pz) tanımlanan parçacıklar, sonsuz sayıda parametreyle tanımlanan alanlarla bir aradadır. Eş-dağılım kuramınca sistemin enerjisinin, denge durumunda, sistemin tüm bileşenlerine eşit biçimde dağılması gerekir. Alanlar sonsuz bileşene sahip olduğundan bütün enerji alanlara dağılmalıdır. (Daha teknik bir ifade ile, denge durumundaki sistemde enerji, bütün özgürlük derecelerine eş olarak dağılır, alanlar sonsuz özgürülük derecesine sahip olduğu için bütün enerji alanlara akmalıdır.) Evren dengede varsayılırsa, deneysel olarak böyle bir gözlemin olmaması, klasik mekaniğin "süreklilik" paradigmasında bir soruna işaret eder.

    Kuantum kuramı ise olayı bambaşka bir şekilde ele alır. Parçacıklar artık doğrudan 3 konum ve 3 momentumla tanımlanmak yerine bir "dalga fonksiyonu" ile tanımlanırlar. Bu dalga fonksiyonu parçacığın bütün bilgisini içinde barındırır ve dalga fonksiyonuna uygun "sorular" sorularak gerekli bilgi alınır. Örneğin konum bilgisi için dalga fonksiyonuna "Parçacık nerede?" sorusunu sorarsınız, o ise size parçacığın soruyu sorduğunuz anda nerede olabileceğini söyler. Buradaki kritik nokta olabilirliktir. Bu, dalga fonksiyonunun bir de "olasılık fonksiyonu" olarak anılmasına neden olmaktadır. Daha sonra, bu olasılıksal durumu bilinçli olup olmama durumuna bağlayan Kopenhag Yorumu ortaya atılmıştır. (Matematik altyapısı yetersiz olanlar denklemleri görmezden gelebilirler.) Matematiksel olarak olayı şöyle tanımlayabiliriz:

    Ψ ( x , t ) {\displaystyle \Psi (x,t)} parçacığı tanımlayan dalga fonksiyonumuz olsun,
    x = Ψ ( x , t ) x Ψ ( x , t ) d x {\displaystyle \langle x\rangle =\int \Psi ^{*}(x,t)x\Psi (x,t)dx}
    integrali bize x'in beklenen değerini verir. Yukarıda bahsedilen soru sorma işlemi tam olarak böyle yapılır. Benzer şekilde momentumun beklenen değeri için;
    p = Ψ ( x , t ) i d d x Ψ ( x , t ) d x {\displaystyle \langle p\rangle =\int \Psi ^{*}(x,t){\frac {\hbar }{i}}{\frac {d}{dx}}\Psi (x,t)dx}
    şeklinde soruyu sorarız. Ψ ( x , t ) {\displaystyle \Psi ^{*}(x,t)} dalga fonksiyonumuzun karmaşık eşleniğidir. Karmaşık eşlenik ve dalga fonksiyonu arasında kalan ifadeler gözlemlenebilirlerimizin, yani konum ve momentumun, konum uzayındaki operatörleridir. Operatörler sorunun ta kendisidir.

    Konum ve momentum dışında daha birçok gözlemlenebilir ile işlem yapılabilir. Ancak konum ve momentum operatörleri kullanılarak diğer birçok operatörü elde etmek mümkündür. İşin ilginç yanı bu operatörle elde etmek için klasik formüller kullanılır. Örneğin kinetik enerji klasik mekanikte;
    T = p 2 2 m {\displaystyle T={\frac {p^{2}}{2m}}}
    şeklinde tanımlanırken kuantum fiziğinde kinetik enerji operatörü yine aynı ifadeyle yazılır. Tek fark "p" artık bir sayı değil bir operatördür. Bu bize Ehrenfest teorimince sağlanır ve bütün operatörleri klasik yasaları kullanarak türetebiliriz. Bu noktada "Peki, dalga fonksiyonu nedir?" sorusuna dönmeliyiz. Dalga fonksiyonu bize Schrödinger denklemi tarafından verilen, bir bakıma parçacığın kimlik kartıdır.Bir boyutta Schrödinger denklemi;
    i d d t Ψ = 2 2 m d 2 d x 2 Ψ + V ( x , t ) Ψ {\displaystyle i\hbar {\frac {d}{dt}}\Psi =-{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}\Psi +V(x,t)\Psi }
    şeklinde yazılabilir. İfade bir bakıma enerji denklemidir ve bahsi geçen "kimlik" kartını sistemin enerjisine göre verir. (Burada kimlikten kasıt, parçacığın elektron mu yoksa nötron mu olduğu değil, momentumu, konumu, kinetik enerjisi gibi gözlemlenebilirleridir.) Bu denklem çözüldüğünde parçacığımızın dalga fonksiyonunu elde etmiş oluruz. En basit atom olan hidrojen atomunun zamandan bağımsız analitik olarak çözülmesi bile zordur, neyse ki belli formalizmlerle, daha karmaşık sistemleri yaklaşımlar yaparak çözmek mümkün oluyor.

    Kuantum mekaniği temelinde bir olasılık teorisidir. Dalga fonksiyonu içinde sistemin bütün olası durumlarını barındırır. Siz soruyu sorduğunuzda size en olası cevabı verir, ancak soru sorma işlemi dalga fonksiyonunu "dağıtır" ve siz bir daha sorduğunuz zaman artık başka bir cevap alırsınız. Bunun yanı sıra kuantum mekaniği yapısı ötürü belirsizlikler barındırır. Bu belirsizlikler bazı gözlemlenebiliri ne kadar iyi bilirseniz diğer bazıları hakkında o kadar az şey bileceğinizi söyler. Örneğin konum ve momentum böyle bir çift oluşturur. Birini ne kadar iyi bilirseniz diğeri hakkında o kadar az bilginiz olur. Bu Heisenberg belirsizlik ilkesi olarak bilinir. Konum ve momentum için Heisenberg belirsizlik ilkesi şöyle gösterilir:

    σ x σ p 2 {\displaystyle \sigma _{x}\sigma _{p}\geqslant {\frac {\hbar }{2}}}
    Bu ifade de σ x {\displaystyle \sigma _{x}} ve σ p {\displaystyle \sigma _{p}} ile verilenler sırasıylayla konum ve momentumdaki belirsizliklerdir.

    Yukarıda ele alınan kuantum mekaniği, öklidyen bir uzayda çalışılmış kuantum mekaniğidir, diğer bir deyişle göreceli değildir. Einstein'ın özel görelilik kuramına uyan bir kuantum mekaniği türetmek mümkündür. Hatta ilk bakışta kolay bir uğraştır. Kuantum fikrine ve özel göreliliğe biraz aşina olan biri bile çözüme kolayca ulaşır. Yukarıda değinilen Schrödinger denklemini daha sade bir formda şöyle ele alabiliriz:

    i t Ψ = H Ψ {\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi =H\Psi }

    Burada H olarak verilen Hamiltonian operatörüdür. (Toplam enerji olarak düşünülebilir.) Relativistik olmayan serbest parçacık (potansiyel enerji sıfır) için Hamiltonian:

    H = p 2 2 m {\displaystyle H={\frac {p^{2}}{2m}}}

    olarak verilir. Relativistik serbest parçacık içinse Hamiltonian:

    H = m 2 c 4 + p 2 c 2 {\displaystyle H={\sqrt {m^{2}c^{4}+p^{2}c^{2}}}}

    şeklinde yazılabilir. İfade pek yabancı değil, değil mi? Hayır, olaya klâsik mekanik açısından bakarsanız, parçacığın durduğunu kabul edersek, momentum sıfır olacak ve ünlü E = m c 2 {\displaystyle E=mc^{2}} 'yi elde etmiş olacaksınız. Şimdi relativistik Hamiltonianla Schrödinger denklemini yeniden yazalım:

    ( i ) 2 c 2 + m 2 c 4 ψ = i t ψ . {\displaystyle {\sqrt {(-i\hbar \mathbf {\nabla } )^{2}c^{2}+m^{2}c^{4}}}\psi =i\hbar {\frac {\partial }{\partial t}}\psi .}

    Karesi alınırsa

    elde edilir. Bu denklem Klein-Gordon denklemi olarak bilinir. Ancak denklem birtakım teknik nedenden ötürü sorunludur. Daha geçerli relativistik çözüm Dirac tarafından keşfedilmiştir ve kendi adıyla anılan denklemle verilir. Ultramikroskobik boyutlarda (Planck Uzunluğu) uzayın küçük dalga boylarında bir kaos olduğu düşünülür. Evrenin milyarda birinin milyarda birinin milyonda biri boyutlarda gözleyecek olursunuz Evren bir kaos olarak görünür.

    Kuantum mekaniği tarihi gelişimi boyunca birçok sınavdan alnının akıyla çıkmayı başarmıştır. Olguları büyük bir doğrulukla açıklaması, yeni olgulara ışık tutması bir teoriden beklenen özelliklerdir ve kuantum mekaniği bu işi gerçekten oldukça iyi başarmıştır. Kuantum fikirleri üzerine gelişen kuantum elektrodinamiği (QED) ve kuantum renk dinamiği (QCD) bu güne kadarki hiçbir teorinin ulaşamadığı hassasiyetlerde sonuçlar vermişlerdir. Ne var ki geçtiğimiz yüzyılın çok büyük iki teorik açılımı bir biriyle uyuşmamaktadır. Doğada bilinen 4 kuvvetten 3'ü, elektromanyetizma, zayıf ve güçlü kuvvetler, kuantum kuramlarıyla ele alınabilirken kütleçekimin henüz tutarlı bir kuantum kuramı bulunamamıştır. Her ne kadar sicim kuramları kuantum kütleçekime aday gibi görünse de çözülmesi gereken çok büyük sorunlar hâlen bulunmaktadır. Günümüzde yaygın kanı kuantum ve kütleçekimin üstünde, doğrusal olmayan daha genel bir kuramın yer aldığıdır.

    Kuantum Mekaniği'nin Uygulamaları[değiştir | kaynağı değiştir]

    Kimyasal ve fizik bilimlerinin temelleri şu temel araştırma alanları üstüne kuruludur:

    Diğer tüm fizik ve kimya dalları, bu temel düzeneklerin uygulamalarıdır. O halde bunlara "saf", diğerlerine "uygulamalı" fizik ve kimya gözü ile bakılabilir. Kuantum mekaniğinin mikro sistemlere uygulanması ile şu uygulamalı fizik ve kimya dalları türetilmiştir:

    Fotokimya ve fotofizik, yüzey kimyası, vb. pek çok dal da kuantum mekaniğinden uygulamalar içermektedir.

    Kuantum mekaniği her ne kadar çok küçüklerin dünyasını modelleyen bir kuram olsa da uygulama alanları gerek dolaysız gerek dolaylı yollarla çok geniştir. Kuantum mekaniği biyoloji, malzeme bilimi, elektronik gibi birçok alanın günümüzdeki anlamına kavuşmasını sağlamıştır.

    Laser, maser, yarı iletkenler gibi günümüzün olmazsa olmazlarının icatları, kuantum mekaniği sayesinde mümkün olmuştur. Ayrıca elektron mikroskobu, atomik kuvvet mikroskobu, taramalı tünellemeli mikroskop gibi biyoloji ve nanoteknolojik uygulamaların olmazsa olmazları; PET-Scan (Positron Emmission Tomography), MRI (Magnetic Resonance Imaging), Tomografi gibi tıbbi görüntüleme cihazları yine kuantum mekaniğinin bize gösterdiği belli doğa olgularını kullanarak çalışırlar. Yine tıp, nanoteknoloji, elektronik gibi birçok alanda sayısız kullanımı olan fiberler kuantum mekaniğinin doğrudan uygulamasına örnektir. Modern kimya, kuantum fikirleri üzerine inşa edilmiş ve çok karmaşık moleküllerin yapıları bu sayede anlaşılmıştır.

    Kuantum mekaniği felsefesi[değiştir | kaynağı değiştir]

    Yazının önceki bölümlerinde kuantum mekaniğinin bugüne kadar girdiği birçok sınavdan başarıyla çıktığını söyledik. Peki, nasıl olur da bu denli başarılı bir teorinin kritik bir felsefesinden söz edilebilir? Dahası teorinin önemli felsefî sorunlar yarattığını ileri sürebiliriz?

    Kuantum mekaniği çok sağlam matematik temelleri üzerine kurulmuştur. Sistemlerin doğası bu matematikle modellenir. Ancak başlı başına bu modelleme kuantum mekaniğinin temel kavramlarının çözümlenmesinde yetersizdir. Örnek verecek olursak, Ψ ( x , t ) {\displaystyle \Psi (x,t)} bir dalga fonksiyonudur. Bu dalga fonksiyonunun mutlak karesinin olasılık genliği olduğu ise bir yorumdur. Eğer bu yorumu araştırır ve genel bir çerçeveye oturtmak istersek, o zaman, kuantum mekaniği felsefesi yapmış oluruz.

    Kuantum mekaniği tamamlanmış bir teori midir?[değiştir | kaynağı değiştir]

    Kuantum mekaniğinin temelleri Heisenberg belirsizlik ilkesinin formüle edildiği 1927 yılından bu zamana dek hiçbir değişikliğe uğramamıştır. Kuantum mekaniğinin uzantısı olarak ortaya çıkan teorilerde ortaya çıkan kavramlar da, bildiğimiz kadarıyla bu temel ilkelerde değişiklik yapılmasını gerektirmezler. Kuantum mekaniği doğduğu andan itibaren temel ilkelerin anlaşılması bakımından büyük tartışmalara yol açmıştır. Bu tartışmalardan biri A. Einstein, B. Podolsky ve N. Rosen'in 1935 yılında "Doğanın Kuantum Mekaniksel Tasviri Tamamlanmış Kabul Edilebilir mi?" başlığıyla yayınladıkları ve yazarlarının adlarının baş harfleriyle "EPR Paradoksu" olarak adlandırılan makalesiyle başlamış olup, hâlen de önemini korumaktadır. EPR makalesi bir fizik teorisinin tamamlanmış kabul edilebilmesi için iki temel koşulu yerine getirmesi gerektiğini söyler. Bunlar;

    EPR makalesine göre teorinin doğru olarak nitelendirilebilmesi için teorinin deney sonuçlarıyla uyumluluğu göz önüne alınmalıdır. Bu bakımdan kuantum mekaniği deneylerle büyük bir uyum gösterdiği için doğru kabul edilir. Teorinin başarısı için gerekli olan diğer koşul olan tamamlanmışlık için ise makalede şu koşul verilmiştir: "Bir fizik kuramında, her fiziksel gerçekliğe karşılık olan bir öge bulunmalıdır."

    Makalede fiziksel gerçeklik şu şekilde tanımlanmıştır: "Bir fiziksel niceliğin değerini, dinamik sistemi herhangi bir biçimde bozmaksızın kesinlikle tahmin edebiliyorsak, o zaman, fiziksel gerçekliğin, bu fiziksel niceliğe karşılık olan bir ögesi vardır."

    Fiziksel niceliğin kesin bir değerini, dinamik sistemi bozmadan teoride elde edebiliyorsak, o zaman, teoriden hesap ile elde edilen bu kesin değer fiziksel gerçekliğin bir ögesine karşılık gelecektir. Ancak fiziksel gerçekliğin bütün ögelerinin fizik teorisinde karşılıklarının bulunması gerektiğine dair bir koşul ileri sürülmemiştir. Bu nedenle, EPR'ye göre, doğru olan teorinin aynı zamanda tamamlanmış olması gerekmez.

    Fiziksel gerçeklik ölçütünün kuantum mekaniği çerçevesinde nasıl kullanıldığı makalede şu örnekle açıklanmıştır. Elimizdeki parçacık Φ ( p ) {\displaystyle \Phi (p)} fonksiyonu ile gösterilsin. Fonksiyonu;

    Φ ( p ) = j a j ϕ j ( p ) {\displaystyle \Phi (p)=\sum _{j}a_{j}\phi _{j}(p)}

    şeklinde gösterelim. Bu parçacığın momentumu ölçülmeden önce şu önerme ileri sürülebilir: Parçacığın momentumunun ölçümden sonra p i {\displaystyle p_{i}} değerini alma olasılığı | a i | 2 {\displaystyle |a_{i}|^{2}} dir. Ayrıca;

    j | a j | 2 = 1 {\displaystyle \sum _{j}|a_{j}|^{2}=1}

    olduğunu kabul edelim. Eğer alınabilecek birden çok momentum değeri mevcutsa | a i | 2 {\displaystyle |a_{i}|^{2}} 1'e eşit değildir. Bu sebepten ötürü fiziksel gerçeklik ölçütü bu durumda kullanılamaz.

    Literatür[değiştir | kaynağı değiştir]

    Ders kitapları[değiştir | kaynağı değiştir]

    Fiziğin diğer alanları hakkında yazılan ilgili ders kitapları[değiştir | kaynağı değiştir]

    Kaynakça[değiştir | kaynağı değiştir]

    Ayrıca bakınız[değiştir | kaynağı değiştir]

    Dış bağlantılar[değiştir | kaynağı değiştir]

    Yazı kaynağı : tr.wikipedia.org

    Kuantum mekaniğine giriş

    Kuantum mekaniği madde ve atomların ve atom içindeki parçacıklar ölçeğinde enerji ile etkileşimlerinin davranışını açıklayan bilimsel ilkeler organıdır: Bu makaleye teknik olmayan konuların tanıtımında ulaşabilirsiniz.

    Klasik fizik astronomik cisimlerin davranışları dahil madde ve gözle görülebilir seviyedeki enerjiyi insan deneyleri için tanıdık ölçekte açıklamıştır. Bu modern bilimin ve teknolojinin çoğunluğu için anahtar rolü oynar. Ayrıca 19. Yüzyılın sonlarına doğru, bilim uzmanları klasik fiziğin açıklayamadığı büyük (makro) görüntüleri ve küçük (mikro) dünyaları keşfettiler. Bu sınırlamalar ile yüzleşen fizik iki büyük devrime yol açtı: görelilik kuramı ve kuantum mekaniği. Bu makale fizikçilerin klasik fiziğin sınırlarını nasıl keşfettiğini ve 20. yüzyılın ilk yıllarında kuantum kuramının temel kavramlarının nasıl geliştiğini açıklar. Bu kavramlar yaklaşık olarak keşfedildikleri sırayla anlatılmıştır.

    Kuantum mekaniğinin bazı yönleri, sezgiler açısından paradoksal görünebilir çünkü bunlar klasik fiziğin mükemmel bir yakınlaşması olduğunu ve büyük uzunluk ölçeklerinde görülenden oldukça farklı davranış tanımladığını gösterir. Örneğin ışık enerji paketleri halinde gelir. Bu enerji paketleri foton olarak isimlendirilir ve kuantum mekaniğinde bazen parçacık bazen de dalga özelliği gösteren bir hem parçacık hem de dalga olarak tanımlanır. Kuantum mekaniği enerjileri, renkleri ve elektromanyetik radyasyonun tüm biçimlerinin spektral yoğunluklarını tahmin eder.

    Kuantum mekaniğinin belirsizlik ilkesi bir parçacığın hem konumunun hem de momentumunun aynı anda belirli bir hassasiyetten daha hassas bir şekilde ölçümlenemeyeceğini belirtir. Bu durum klasik fizik için söz konusu olmayan bir özelliktir.

    Birinci kuantum teorisi: Max Planck ve siyah cisim ışınımı[değiştir | kaynağı değiştir]

    Bir nesnenin sıcaklığı nedeniyle nesnenin yüzeyinden yayılan elektromanyetik termal radyasyondur. Eğer cisim yeterli miktarda ısıtılırsa spektrumun&nbsp kırmızı ucunda ışık yaymaya başlarlar. red hot. Isıtma daha kısa dalga boylarında (yüksek frekansların) ışığın renklerinin maviden beyaza, beyazdan sarıya, sarıdan kırmızıya değişmesine neden olur. Bunun mükemmel bir verici ve mükemmel bir soğurucu olduğu ortaya çıktı. Mükemmel siyah duran nesneler soğuk olduğu zaman cisim bütün ışığı emdiği için bunun üzerine düşer ve hiçbirini yaymaz. Sonuç olarak, ideal termal yayıcılar siyah cisim olarak bilinir ve radyasyon emdiği için siyah cisim radyasyonu denir.

    19 yüzyılın sonlarında termal radyasyon oldukça deneysel olarak iyi karakterize olmuştur. [note 1] Ayrıca klasik fizik sıcaklık ve radyasyonun baskın frekansı arasındaki ilişkiyi açıklayamamıştır. Hatta klasik fizik kısa dalga boylarında sıcak cisimlerin enerjiyi sonsuz hızla yaydığı kabul edilir. Açıkça yanlış olan bu sonuç morötesi felaket olarak bilinir. Fizikçiler çalışma yaptıkları tek bir teori için deneyler sonucu elde ettikleri sonucu açıklamışlardır.

    Her osilatörün herhangi bir enerjiyi istediği miktarda yaymanın mümkün olmasını beklemekten çok, tek karakteristik bir frekansta enerji birimlerini bir tam sayı sayı ürettiğini varsaymak zorunda olduğumuzu deneysel sonucu anlayabiliriz. Diğer bir deyişle, her bir osilatör enerji nicelemiş oldu. " Planck’a göre her osilatör için enerji kuantum, osilatör frekansına orantılıdır ve orantılılık sabiti artık Planck sabiti olarak da bilinir.

    Planck kanunu fizikteki ilk kuantum teorisidir ve Planck enerji miktarındaki keşfiyle Fizikte büyük ilerlemelere yol açtığı için 1918 yılında Nobel Ödülü'nü kazandı.[2] Ayrıca aynı zamanda Planck'ın görünüm nicelemesi tamamen matematiksel bir numara yerine, (biz artık inanıyoruz gibi) dünya anlayışımızda köklü bir değişim oldu.[3]

    Fotonlar: ışığın kantizasyonu[değiştir | kaynağı değiştir]

    1905'te Albert Einstein daha fazla yol kat etti. Albert Einstein kantizasyonun sadece matematiksel bir hile olmadığını önerdi: bir ışık demeti enerjisi fotons.[4] Tek bir fotonun enerjisi Planck'ın sabit ile çarpılma sıklığı ile elde edilir:

    Yüzyıllar boyunca, bilim adamları ışığın iki olası teorileri arasında tartıştılar: bu dalga mı yoksa ufak parçacıkların akması mı? 19. yüzyıla gelindiğinde, bu tür kırılma, yansıma ve polarizasyon gibi gözlenen etkileri açıklamak mümkün olduğu için tartışmalar genellikle dalga teorisinin lehine yerleşmiş olduğu kabul edilmiştir. James CLERK Maxwell elektriğin, manyetiğin ve ışığın aynı olayın bütün tezahürleri olduğunu gösterir: elektromanyetik alan. Klasik elektromanyetik kurallarının toplam kurulumu olarak bilinen Maxwell denklemleri ışığı dalga olarak tanımlar: Titreşen elektrik ve manyetik alanların birleşimidir. Dalga teorisi lehine kanıt üstünlüğünü yüzünden, başlangıçta Einstein'ın fikirleri büyük şüpheyle karşılandı. Sonunda, ancak, foton modeli favori oldu; kendi lehine olan en önemli kanıtlarından biri aşağıdaki bölümde açıklanan fotoelektrik etki ve birkaç şaşırtıcı özelliklerini açıklamak. Bununla birlikte, örneğin kırınım gibi ışık diğer özelliklerini anlamaya yardımcı olmak için dalga benzetmesi vazgeçilmez olmuştur.

    Fotoelektrik etki[değiştir | kaynağı değiştir]

    1887 yılında Heinrich Hertz ışığın metalden elektron yayabildiğini gözlemlemiştir.[5] 1902 tarihinde Philipp Lenard elektronun yayabildiği maksimum enerjinin ışığın frekansıyla ilişkili olduğunu ama yoğunluğuyla bağlantısı olmadığını bulmuştur; eğer frekans çok düşük olursa, herhangi bir elektron yoğunluk bağımsız olarak dışarı atılır. Elektronun yayılmasına neden olan düşük frekanslı eşik frekansı olarak adlandırılan ışık her metal için farklıdır. Bu gözlem elektronun enerji radyasyon yoğunluğu ile orantılı olması gerektiğini öngörür klasik elektromanyetizma ile çelişmektedir.[6] :24

    Einstein ışık huzmesi parçacıklarının (fotonlar) bir akım olduğunu ve ışın frekansı f ise daha sonra her foton hf eşit bir enerjiye sahip olduğunu olduğunu varsayarak etkisini açıkladı.[5] Elektron sadece tek fotonların vurdu olması muhtemeldir ve en çok enerjiyi hf elektronu verir.[5] Bu nedenle huzmesinin yoğunluğunun bir etkisi yoktur {{# tag: ref | Aslında orada yoğunluk bağımlı etkileri olabilir, ancak non-lazer kaynakları ile ulaşılabilir yoğunluklarda bu etkiler gözlemlenemez edebilirsiniz | grup = not}.} sadece frekans elektron kazandırdığı edilebilir maksimum enerji belirler.[5]

    Eşik seviyesi etkilerini açıklamak için, Einstein bu metalden bir elektron çıkarmak için, φ ile gösterilen iş fonksiyonlu adı verilen enerjiden belirli bir miktar alındığını savunur.[5] Her bir metal için farklı bir enerji vardır. Fotonun enerji çalışma fonksiyonu daha az ise, o zaman metalden elektron çıkarmak için yeterli enerji taşımaz. Eşik frekansı,f0 , enerji çalışma işlevine eşit olan bir foton sıklığıdır:

    Eğer f, f0 dan büyük olursa, hf enerjisi elektron çıkarmak için yeterli olur. Dışarı elektronlar en fazla foton enerjisinin eksi metalden elektron çıkarmak için gerekli olan enerjiye eşit bir kinetik enerjisine EKsahiptir:

    Einstein’ın ışık açıklaması parçacıklardan oluşan varlık olarak nicelenmiş ve enerji Planck'ın kavramı genişletilmiştir: belirli bir frekans olan f tek bir foton enerjisi hf değişmeyen miktarda sunar. Başka bir deyişle bireysel atomlar enerjiyi az ya da çok teslim edebilir ancak onların frekansına bağlıdır. Foton bir parçacık olmakla birlikte, yine de frekans dalga benzeri özelliğine sahip olarak tarif edilir. Bir kez daha, ışığın parçacık hesabı "tehlike" ediliyordu. [7] {{# tag: ref | Einstein'ın fotoelektrik etki denklemi' elde edilecek ve "foton" kavramını gerek kalmadan' açıklanabilir. Bu elektromanyetik radyasyon sürece malzemede elektronlar kuantum mekaniğinin yasaları tarafından tedavi edilir. Sonuçlar, termal ışık kaynakları için sayısal olarak doğru hem elektron emisyon oranı yanı sıra açısal dağılımı için (güneş, ampuller, vs.) Grup = not | Bu noktada daha fazla bilgi için, NTRS.NASA.gov</ref>|group=note}}

    Belirli bir dereceye kadar enerji içeren ışığın sonuçları[değiştir | kaynağı değiştir]

    Elektromanyetik radyasyon ile her bir fotonun enerjisi arasındaki ilişki kızılötesi ışıkların güneş yanığına neden olmadığını gösterirken morötesi ışıkların güneş yanığına neden olduğunu gösterebilir. Morötesi ışık fotonu büyük miktarda enerji iletebilir- yeterli miktarda hücre hasarı güneş yanığı meydana getirebilir. Kızılötesi ışık fotonu düşük miktarda enerji iletebilir-sadece kişilerin cildinin ısınmasını sağlar. Yani bir kızılötesi lamba kimseye bir güneş yanığı veremez belki soğuk bir odada yeterince büyük yüzeye sahip olduğunda insanları sıcak ve rahat tutmaya yardımcı olur.

    Eğer her bir foton eşit enerjiye sahip olsaydı, bir "yüksek enerji" fotonu konuşmak doğru olmazdı. Taşan yüzeylerle birlikte saniyede gelen daha fazla fotonlar yüzünden yüksek frekanslı ışıklar daha fazla enerji taşır. Düşük frekanslı ışık yalnızca aynı nedenle daha fazla enerji taşıyabilir. Eğer bütün fotonların aynı enerjiyi taşıdığı doğru olsaydı fotonların teslim oranını iki katına çıktığında, o zaman, her saniye gelen enerji birimlerinin sayısını iki katına çıkar. Einstein bağımsız dalgaların klasik parçacık bazlı analizlerin lehindeki yaklaşımı ayrı adımlardaki frekanslarla değişebileceği yaklaşımını reddeder. Aynı frekansa sahip tüm fotonlar aynı enerjiye sahiptir ve farklı frekansların tüm fotonlarla orantılı farklı enerjilere sahiptir.

    Doğada tek fotonlar nadir olarak olarak rastlanır. Güneş fotonları sürekli olarak fotonları elektromanyetik sıklıklarda emer bu yüzden bunlar sürekli bir dalga olarak değil, ayrı ayrı birimler olarak yaymak için görünür. 19. yüzyılda Hertz ve Lennard mevcut sürüm kaynaklarının paylaşıldığı karakteristiktelerdir. Kırmızı parıltılı demirden ya da kırmızı ışık yayan yıldız güzel enerji içerdiği söylenebilir. Bazı radyasyonların vücudumuza sürekli eklenerek devam eden toplam enerjinin kırmızı, turuncu, yeşil, sarı, mavi, mor ve bunun gibi ışıklar yaydığı tahmin edilmiştir. Büyük yıldız ve demir büyük parçalar olarak daha sonra mutlaka yelpazenin mor sonuna doğru daha fazla renk ile kızdırma olurdu ama öyle değil. Işıma gövdesinin rengini değiştirmek için sıcaklığı değiştirmek gerekir. Sıcaklığındaki bir artış daha yüksek frekanslarda foton yaymasını sağlar ve daha yüksek düzeyde tek tek atomuna uyarmak için kullanılabilir ve kuantum enerjisi değiştir.

    Bir yıldız (ya da demir bir parça) ile birim zaman başına toplam yayılan enerji, hem zaman birimi başına fotonların sayısı, hem de dâhil olan bir foton her biri tarafından taşınan enerji miktarına bağlıdır. Diğer bir deyişle, bir ışıma gövdesinin karakteristik frekansı kendi sıcaklığına bağlıdır. Fizikçiler sadece bireysel ve neredeyse ayırt edilemez fotonların büyük sayılar içeren ışık demetlerini aradığı zaman, tek tek foton enerji düzeylerinin önemini anlamak zor olacaktı. Bu yüzden fizikçiler fotoelektrik etkileri gösteren cihazı bulduklarında, başlangıçta yüksek ışık yoğunluğunun fotoelektrik bir cihazdan daha yüksek bir voltaj üretmesi beklenmektedir. Bu spektrumun kırmızı sonuna doğru güçlü ışık ışınları hiç elektrik potansiyeli üretmeyeceği bulunurken, spektrumunun menekşe ucuna doğru ışık ışınları yüksek ve daha yüksek voltajlar üretebileceğini keşfedildi. Einstein’ın fikri farklı enerji içeren her bir birimlerin onların frekansına bağlı olmasıdır ve bu fikir şimdiye kadar mümkün oldukça garip görünürken deney sonuçları sonucu açıklaması yapılmıştır.

    Enerji fotonun verilen herhangi bir frekanstaki sabit niceliğini açığa vurmasına rağmen önceki bölgedeki ışık emilim karşısında bir fotoelektrik cihazındaki elektronların enerjisi ilk durumda düzgün değildir. Anormal sonuçlar bireysel elektronların olması durumunda oluşur. Örneğin; karaktersizliği düşük frekanslı aydınlatma emildiğinde fotoelektrik cihaz elektron atılırken uyarılır. İstatiksel yönden Bir fotoelektrik cihazın karakteristik davranışları denge seviyesindeyken o elektronların büyük çoğunluğunun davranışını yansıtır. Bu nokta kuantum dinamikleri bireysel parçacıkların çalışması ile klasik fizik olarak kümelendiği parçacıkların çalışması arasındaki ayrımı kavramada yararlıdır

    Maddenin kantizasyon: Bohr atom modeli[değiştir | kaynağı değiştir]

    20. yüzyılın şafağında tarafından, küçük yoğunluğun çevresinde pozitif yüklü çekirdeği çevreleyen negatif yüklü elektronların bir yaygın bulut ile atom modeli oluşturması gereklidir. Bu özellikler güneşin etrafındaki gezegenler gibi çekirdeğin etrafında elektronların çember şeklinde yörünge oluşturan bir model önerdi.Klasik teoride yörüngedeki elektronlara göre merkezcil ivmeyi gören ve bu nedenle ikinci bir kısmını onunla çarpışıp elektromanyetik radyasyon oluşturmasına göre bu atom modelinin sabit olmadığı bilinir.

    İkinci ilişki bulmaca atomlu sürüm spektrumu olmasıyla ilişkilidir. Bir gaz ısıtıldığında, sadece kesikli frekanslarda ışık yayar. Resimde gösterildiği gibi, örneğin, hidrojen ile dışarı verilen görünür ışık, dört farklı renk oluşur. Buna karşılık, beyaz ışık görülebilir frekansların bütün aralığı boyunca kesintisiz bir sürümü oluşur. On dokuzuncu yüzyılın sonunda, farklı çizgilerin frekanslarının neden olduğunu açıklayan bu basit kural, ya da yoğunlukları hakkında herhangi bir tahmin yapmamasına rağmen birbirleriyle nasıl ilişkili olduğunu göstermiştir. Formül aynı zamanda gözlemlenemeyen morötesi ve kızılötesi ışıkların bazı ek spektral çizgilerini tahmin etmiştir. Bu çizgiler daha sonra deneysel olarak gözlemlenmiş ve formüle olan güven artmıştır.

    1885 yılında İsviçreli matematikçi Johann Balmer her dalga boyu λ keşfetti, hidrojenin görünür spektrumda (lambda) bazı tam sayı {{matematik ile ilgili | n} } aşağıdaki denklemle verilmiştir

    B sabittir ve Balmer 364.56 nm eşit olduğuna karar vermiştir.

    1888 yılında Johannes Rydberg büyük ölçüde yaygın ve Balmer formülü açıklayıcı yarar arttı. n iki tam sayılar ile ilgili | O { λ} {math} öngördü ve m şimdi olarak bilinen ne göre, Rydberg formülü:[8]

    R Rydberg sabiti, 0,0110 nm -1 eşit ve n m daha yüksek olmalıdır.

    1913 yılında Niels Bohr kuantumlanan elektron yörüngelerine sahip yeni bir atom modeli önerdi: elektronlar gezegenlerin güneş etrafında yörünge olarak hala çok çekirdeğini yörünge, ancak sadece herhangi bir mesafede yörüngeye değil, belli yörüngelerde yaşaması için izin verilmektedir.[9] Bir atom enerjiyi yaydığı (veya emdiği) zaman tahmin edilebileceği gibi, elektron, başka çekirdeğin etrafındaki bir yörüngede sürekli olarak hareket etmez. Elektron bir yörüngeden diğerine atlamak yerine bir foton şeklinde ışık yayar. Fotonların her element tarafından yayılan olası enerjisi farklı yörüngeler arasındaki enerji farkı olarak belirlenmiştir ve bu her element için olan yayınlama spektrumu birçok hat içerir.[10]

    Bohr modelinde elektron basit olarak enerjinin sürekli olarak yayılmasına ve çekirdeğin içinde çarpıştırılmasına izin vermez. Yörüngenin yakınlaşmasına izin verildiği zaman sonsuza kadar kararlı olur. Bohr modeli yörüngenin bu yolla nicelemesini açıklayamadı ve aynı zamanda birden fazla elektron atomlar için doğru tahminler yapamadı ya da bazı spektral çizgilerinin diğerlerinden neden daha parlak olduğunu açıklayamadı. Bohr modeli için bazı temel varsayımların yanlış bulunmasına rağmen yayımlanma spektrumundaki ayrı çizgiler atomların bazı elektron özelliklerinin doğru olduğunu nitelendirmiştir. Elektronların asıl davranışı çarpıcı şekilde Bohr atomundan ve bizim gördüğümüz ve her günkü deneyimlerimizden farklıdır; atomun modern kuantum mekaniğinin modeli aşağıda tartışılmıştır.

    belirli dereceye kadar enerji içeren elektronlar Bohr L kavramlaştırılmış:

    Dalga-parçacık ikiliği[değiştir | kaynağı değiştir]

    Tıpkı ışık gibi hem dalga hem de parçacık hareketi ve benzeri özelliklere sahiptir. Broglie hipotezi de ayrıca dalga hareketi özelliklerene sahiptir.[11]

    Maddenin elektron dalgası olarak davranmasını ilk defa deneysel olarak elektronlar için gösterilmiştir: Elektron demeti sadece bir ışık demeti ya da bir su dalgası gibi, kırınım sergileyebilir. Benzer bir dalga gibi. Benzer dalga olayları daha sonra atomlar ve hatta küçük moleküller için gösterildi. Bir nesne ile ilişkili dalga boyu, λ, Planck sabiti h aracılığıyla momentum, p ile ilgilidir:[12][13]

    Dalga-parçacık ikiliği kuantum fiziğinde tamamlayıcılık ilkesinin bir örneğidir. Dalga-parçacık ikiliğinin zarif bir örneği olan çift yarık deneyi aşağıdaki bölümde ele alınmaktadır.

    Çift-yarık deneyi[değiştir | kaynağı değiştir]

    Orijinal olarak 1827 yılında Thomas Young ve Augustin Fresnel tarafından gerçekleştirilen çift-yarık deneyinde, bir ışık demetinin bir ekranda açık ve koyu bantlarla bir girişim deseni üreten, iki dar, yakın aralıklı yarıktan yönlendirilir. Yarıklardan biri örtbas edilirse, saf parazit nedeniyle saçakların yoğunluğu her yerde yarıya olacağını bekleyebilirsiniz. Aslında çok daha basit bir model olan basit kırılma modeli görülmektedir. Kapalı bir yarık daha basit çaplı ve açık yarığa zıt bir desene neden olur. Tam olarak su dalgaları ile aynı davranışı gösterdiği ortaya konabilir ve böylece çift-yarık deneyi ışığın dalga doğasının bir gösterisi olarak görülür.

    Çift yarık deneyi elektronları, atomları ve hatta molekülleri kullanılarak gerçekleştirilmiştir ve aynı zamanda parazit desenin aynı tipi olarak görülmüştür. Bu nedenle, tüm madde parçacıklarının ve dalga karakterlerinin bütün özelliklere sahip olduğu ortaya çıkartılmıştır

    Kaynak yoğunluğunun bir seferde cihaz boyunca geçen tek bir parçacığın (örneğin, foton veya elektron) aşağı açılmasına rağmen, aynı girişim deseni zaman içinde gelişir. Bu tespit edildiğinde kuantum parçacığı çift yarıktan geçen ancak parçacık olan bir dalga gibi davranır. Bu kuantum tamamlayıcılığının tipik bir özelliğidir: kuantum parçacığı parçacık gibi özellikleri ölçmek için dalga gibi davranır.Detektör ekranında herhangi bireysel parçacığın ortaya çıkılı tamamen rastgele bir yöntemin sonucudur.

    Bohr modeline Uygulama[değiştir | kaynağı değiştir]

    De Broglie Bohr modelini geliştirerek bir çekirdeğin etrafındaki yörüngede bir elektronun dalga gibi özelliklere sahip olabileceğini gösterdi. Özellikle, bir elektron, sadece çekirdek çevresinde bir dalga izin durumlarda gözlenecektir. Durağan bir dalganın örneği iki ucundan sabitlenmiş ve titreşim yaratabilen bir viyolin yayıdır. Telli bir çalgı aleti tarafından oluşturulan dalgalar salınım yaparak aşağı yukarı hareket ettiği görülür. Ayakta duran dalga boyu titreşimli nesnenin boyu ve sınır koşullarıyla ilgilidir. Örneğin, viyolan yayı iki ucundan sabitlendiği için, dalga boyu 2l/n (l uzunluk ve n bir pozitif tam sayı) olan durağan bir dalga taşıyabilir.

    De Broglie izin verilen elektron yörüngelerinin çevresindeki yörünge dalga boylarının bir tam sayı olacağını önerdi. Elektronun dalga boyu çekirdekten belirli uzaklıklarda sadece Bohr yörüngelerinde mümkün olduğunu belirler. Buna karşılık olarak, belirli bir değerden daha küçük çekirdeğin yörünge kurması imkânsızdır. Çekirdekten minimum olası mesafeye Bohr yarıçapı denir. p. 87</ref> De Broglie kuantum teorik olayları tedavisi Schrödinger başlangıç noktası olarak hizmet ettiğinde o dalga denklemini kuantum teori olayına göre oluşturulmuştur.

    Modern kuantum mekaniğinin gelişimi[değiştir | kaynağı değiştir]

    Bohr gençlik sınıf arkadaşlarını hidrojen sürüm spektrumunun yoğunluğunu bulmak ve açıklamak için tayin ettiğinde, Werner Heisenberg daha basit problemleri açıklayarak güncel bir başarı yakaladı. 1925 yılında, matematiksel benzetme vasıtasıyla, o yoğunluklarının klasik hesaplanması için kuantum mekanik analoğunu yazdı.[14][15] Kısa bir süre sonra, Heisenberg’sin meslektaşı Max Born farklı enerji seviyeleri arasındaki geçişleri için olasılıkları hesaplamada Heisenberg yönteminin en iyi matematiksel matris kavramının kullanabileceğini fark etti. [note 2]

    Schrödinger eşitliği olarak adlandırılan matematiksel model kuantum mekaniğinin çekirdeğini oluşturur. Bu model kuantum sisteminin izin verilen sabit durumunu tanımlar ve zamanla fiziksel kuantum durumunun fiziksel sisteminin nasıl değiştiğini tanımlar.[16] O matematiksel modelin sonunda denilen yapılmış Schrödinger denklemi onun yaratıcısı oldu sonra, kuantum mekaniğine merkezi, tanımlayıp bir kuantum sisteminin durağan durumlarını açıkladı ve nasıl zaman fiziksel kuantum durumlarının bir sistem değişiklikleri oluğunu gösterdi.[17] Dalga bir "dalga fonksiyonu" olarak bilinen bir matematiksel fonksiyonu olarak tarif edilmektedir ve genellikle Yunan harfi ψ {\displaystyle \psi } ("psi") ile temsil edilir. Schrödinger'in kedisini tanıttığı yazıda, o dalga fonksiyonu "ölçüm sonuçlarının olasılığını öngörmek için bir araç" sağlar ve "ölçüm beklentilerinin olası gelecek sonuçlarını" sağlar. Schrödinger denklemine bakınız. Schrödinger proton tarafından oluşturulan elektrik potansiyelin bir kuyu içinde protonlar tarafından oluşturularak hareket eden klasik dalgaların hidrojen enerji seviyelerini hesaplamayı mümkün kılmıştır Bu hesaplama Bohr modelinin enerji seviyelerini doğru olarak çoğaltamaz. Schrödinger Heisenberg’in matris mekaniğini ve onun kendi dalga mekaniğinin elektron davranışları ve özellikleri ile ilgili aynı tahminleri yaptığını kanıtlamıştır; matematiksel olarak iki teori aynıdır fakat bu iki adam ortak teori yorumu yapmada anlaşamamıştır. Örneğin Heisenberg teorik tahminlerine göre elektronların atom içindeki yörüngeler arasında ani geçişlerde bir problem görmemiştir (as paraphrased by Wilhelm Wien[18]) ama Schrödinger bu teorinin sürekli dalga hareketi özelliklerinin kuantum hakkında saçmalık denmemesini( Wilhelm Wien tarafında) ummuştur.

    Kopenhag yorumu[değiştir | kaynağı değiştir]

    Heisenberg ve diğerleri bu deneysel sonuçlarının ne olduğunu ve matematiksel modellerin asıl anlamının ne olduğunu açıklamaya çalıştılar. Kuantum mekaniğinin Copenhagen yorumları olarak bilinen bu açıklamalar kuantum mekaniğinin ölçümlerini inceleyen ve açıklayan gerçekçilik doğasının ve kuantum mekaniğinin matematiksel formülleriyle ve ölçümleriyle açıklamayı hedeflemiştir.

    Kopenhag yorumunun temel ilkeleri şunlardır:

    Bu ilkelerin çeşitli sonuçları aşağıdaki alt bölümlerde daha ayrıntılı olarak tartışılmıştır.

    Belirsizlik ilkesi[değiştir | kaynağı değiştir]

    kazandı.[19]]]

    Örneğin bir araba bir radar hız tuzağı geçiyor - biz bir nesnenin konumunu ve hızını ölçmek istediğinizi varsayalım. Biz arabanın zaman içinde belli bir anda kesin bir konuma ve hıza sahip olduğunu varsayalım, bizim ölçümlerimizin bu değerleri ölçüm donanım kalitesine bağlı olduğunu nasıl doğrudur- eğer ölçüm donanımın kesinliğini artırırsak doğru değerlere yakın sonuçlar elde ederiz. Özellikle karşı yönün ve pozisyonun etkilemediği arabanın hızını tam olarak nasıl ölçtüğümüzü varsayarız. 1927 yılında Heisenberg bu varsayımların doğru olmadığını kanıtlamıştır. Kuantum mekaniği fiziksel özelliklerinin belirli çiftleri, konum ve hız gibi, her ikisi de isteğe bağlı hassas bilinmezlik göstermektedir.[20] Daha çok kesin olarak bilinen özellik diğerlerinden daha az kesinlik gösterir. Bu durum bilinmezlik ilkesi olarak bilinir. Belirsizlik ilkesi, bizim ölçüm cihazlarının doğruluğu hakkında bir açıklama değildir ama sistemin kendisi doğası hakkındadır-arabanın kesin bir konum ve hıza sahip olduğu varsayımımız yanlış olmuştur. Araba ve insanların bir ölçekte, bu belirsizlikler önemsenmeyecek kadar çok küçük, ama atomları ve elektronları ile uğraşırken bu belirsizlikler önemli hale gelir. Heisenberg’in verdiği bir örneğe göre bir ışık fotonu kullanarak bir elektronun konum ve momentum ölçümü hesaplanmıştır. Düşük frekanslı bir fotonun rahatsızlığı ile - yani belirsizliği ile-. Momentumu daha az olur ama pozisyonunun ölçüm etkisi daha güvenilir olur.

    Belirsizlik ilkesi bir parçacığın konum ve momentumun belirsizlik ürününün (momentumun kütle ile çarpılan hızıdır) asla belirli bir değerden daha az olamadığını ve bu değerin Planck sabiti ile ilgili olduğunu matematiksel olarak gösterir.[21]

    Dalga etkisinin çöküşü[değiştir | kaynağı değiştir]

    Dalga fonksiyon çöküşü ne olursa olsun bu bir açıklama sıkıntısıyken kesin bir durumda sistemin tarifi ile sistemin kararsız halinin açıklamasını değiştirmek daha rahat hale gelir. Doğanın oluşma durumlarının açıklamaları tartışmalıdır. Fotonun bir algılama ekranında gösterilmeden önce herhangi bir zamanda olasılıkların gösterimi sadece bir dizi ile tarif edilebilir. Eğer kamera, zaman ve cihaz etkileşim alanı CCD’nin nerede etkileşim yaptığı gösterildiği zaman cihazın çok dar limitlerde olduğu bilinir. Ancak, foton kaybolduğunda ve dalga fonksiyonunda onunla kaybolur. Bunun yerine tespit ekranında bazı fiziksel değişim, örneğin, fotoğraf filmi, bir tabaka içinde bir açık nokta ya da bir CCD gibi bir hücrede elektrik potansiyel değişikliği ortaya çıkmıştır.

    Özdurumlar ve özdeğerleri[değiştir | kaynağı değiştir]

    Belirsizlik ilkesi yüzünden pozisyon ve parçacıkların momentumları hakkındaki tablolar sadece pozisyon veya momentumun bazı sayısal değere sahip olacağı bir olasılık kararlaştırabilir. Bu nedenle açıkça böyle bir olasılık bulutu içinde kesin bir değere sahip bir durumdaki elektron ile belirsiz olan durum arasındaki farkı formüle etmek gerekmektedir. Nesne bazı durumlarda sıkıştırılırken bir öz durumuna sahip olduğu söylenir.

    Pauli dışlama kuralı[değiştir | kaynağı değiştir]

    1924 yılında, Wolfgang Pauli gözlenen moleküler spektrumları ve kuantum mekaniğinin tahminleri arasındaki tutarsızlıkları iki olası değerler ile birlikte göstererek yeni kuantum derecesini (ya da kuantum numarası) önerdi. . Özellikle atomik hidrojenin spektrumu bir ikili ya da sadece bir satır beklenen küçük bir miktar ile farklı çift hatları vardı. Pauli kendisinin atomların aynı kuantum sayısı dâhilinde bulunan atomların var olamayacağını söyleyen dışlama ilkesini formüle etmiştir. "[22]

    Bir yıl sonra Unlenbeck ve Goudsmit Pauli’nin dönme denilen bir özellik ile özgürlüğün yeni derecesini tespit ettiler. Ralph Kronig kökenli fikir elektronların eksende dönme hareketi yapmasıdır. Dönme kayıp manyetik momentleri hesaplayabilir ve aynı yörüngede olan iki elektronun farklı yönlerde dönen uzak kuantum durumlarını işgal etmelerine izin verir. Böylece dışlama ilkesi tatmin edici bir hal alır. Kuantum sayısı dönme(pozitif veya negatif) duygusunu temsil eder.

    Hidrojen atomu için uygulamalar[değiştir | kaynağı değiştir]

    Atomunun Bohr modeli nükleer güneşin etrafındaki elektronlarla birlikteki esas bir gezegenidir. Ancak, belirsizlik ilkesi bir elektronun aynı anda bir gezegen ile yaptığı şekilde tam yerini ve hızını belirtemez. Klasik yörüngelerin yerine elektronlar yerleşik atomik yörünge olarak bilinir. Bir yörüngenin elektron bulundurabileceği olası yerleri "bulutlardır daha doğrusu kesin bir konumdan daha olası bir dağılımıdır.[22] Her bir yörünge iki boyutludan ziyade üç boyutludur ve %95 elektron olan bu bölge üç boyutlu bölgesi olarak tasvir edilir.[23]

    Schrödinger iyi bir elektrik potansiyeliV, "dalga fonksiyonu" Ψ ile temsil edilen bir dalga gibi bir hidrojen atomu elektron gibi muamele edilmesiyle hidrojen enerji seviyelerini hesaplamak mümkün olduğunu, V, proton tarafından oluşturularak gösterilmiştir. Schrödinger'in denkleminin çözümleri elektron konumlarındaki ve yerlerindeki olasılıklar dağıtımları içindir. Yörüngeler üç boyutta farklı şekillere sahiptir. Farklı yörüngelerin farklı enerjileri hesaplanabilir ve Bohr modelinin enerji seviyeleri doğru şekilde eşleştirilebilir.

    Schrödinger’in resmi dâhilinde her bir elektron dört özelliğe sahiptir:

    Bu özelliklerin toplu adı elektronun kuantum durumudur. Kuantum durumu her bir özellikte verilen numaralar tarafından tanımlanabilir; bunlar elektronun kuantum numaraları olarak bilinir. Elektronun kuantum durumu dalga denklemi tarafından tanımlanmıştır. Pauli dışlama ilkesi, bir atomun içinde herhangi iki elektronun dört sayıların aynı değerlere sahip olabileceğini söyler.

    Yörüngeyi açıklayan ilk özellik temel kuantum numarasıdır, n, n Bohr modelindekiyle aynıdır. n her bir yörüngenin enerji seviyesini belirtir. Bu olası n değerleri tam sayıdır.

    l ile belirtilen diğer kuantum sayısı olan azimuthal yörüngenin şekli olarak tanımlanır. Şekli yörüngenin açısal momentumunun sonucudur. Açısal momentumu hızlandırmak veya dış kuvvet etkisi altında yavaşlatmak için kullanılan eğirme nesnesinin direncini temsil eder. Azimutal kuantum sayısı, çekirdeğin etrafında bir elektronun yörünge açısal momentumu temsil eder. l için olası değerler 0 ile n − 1 arasındaki tam sayılardır:

    Her yörünge şeklinin kendi harfi vardır. İlk şekli s (anımsatıcı varlık "küre") ile gösterilir. Bir sonraki şekil p harfi ile gösterilmiştir ve bir dambıl bir formu vardır. Diğer yörüngeler daha karmaşık şekillere sahiptir (atomik yörünge bakın) ve harfler d, f ve g ile gösterilir.

    Üçüncü kuantum sayısı, manyetik kuantum sayısı, elektronun manyetik an tarif eder ve ml (ya da m) ile gösterilir. ml için olası değerler l ile l arasındaki tam sayılardır

    Manyetik kuantum sayısı belirli bir yönde açısal momentum bileşeni ölçer. Keyfi yönü geleneksel olarak z-yönünde seçilir.

    Dördüncü kuantum sayısı, (elektronun dönmesi "yönlendirme" ile ilgilidir) Spin kuantum sayısı +12 veya −12 değerleridir ve ms ile gösterilir.

    Dirac dalga denklemi[değiştir | kaynağı değiştir]

    Paul Dirac 1928 yılında Pauli denklemini genişletmiştir. Bu denklem elektronların dönmesini tanımlayarak özel görelilik hesaplanmıştır. En basit elektromanyetik etkileşim kullanarak Dirac elektronun dönme ile ilişkili olan manyetik moment değerini tahmin etmek mümkündür ve klasik fizik tarafından yönetilen dönen yüklü bir küre olamayacak kadar büyük olduğu deneysel olarak gözlemlenerek bir değer bulundu. O hidrojen atomunun spektral hatları için çözdü ve Sommerfeld’in ilk prensibi başarılı bir Hidrojen spektrumunun ince yapısı için bir formül üretmeyi başardı.

    Dirac’ın denklemlerinin önerdiği yeni çözümler enerji için negatif değerler vermiştir. Bu çok parçacıklı kuantum alan teorisine neden olmuştur.

    Kuantum dolaşıklığı[değiştir | kaynağı değiştir]

    Pauli çıkarma ilkesi bir sistemdeki iki elektronun aynı durumda bulunamayacağını söyler. Doğa açık olasılıklardan ayrılır ancak bu iki elektron iki durumlarda birbiri üzerine ‘bindirilmiş’ olabilir. Hiçbir şey, üst üste dalga "çöküşü" kadar kesin değildir ve o anda bir elektron o yerde üst üste bindirilmiş iki dalga karmaşık değerli genliklerinin toplamının mutlak değerinin karesi olarak olasılık gösterir. Bu durum çok soyuttur. Aşağıdaki gibi iki zıt durumlarda aynı olan ve her biri üzerine bindirilmiş olduğu zaman ortaya çıkan dolaşmış fotonları düşünmenin somut bir yoludur.

    Kuantum mekaniğinin tamamlanmamış bir teori olduğunu göstermeye çalışan Einstein eski çeşitli özellikleri ölçtüğünde iki ya da daha fazla parçacığın eskiden birbirleriyle etkileşim içinde olduğunu söyleyen tahminlerinin kuvvetli bir şekilde bağ kurduğunu gösterdi. Einstein etkileşimleri açıklamak için klasik yollar aradı.

    Şimdi EPR çelişkisi olarak bilinen tartışma Einstein, Podolsky ve Rosen( 1935; kısaltılmış EPR) gibi ünlü raporlarda başarılı bir şekilde çözümlenmiştir. Kopenhag yorumuna göre ise şimdi genellikle yerel gerçekçilik denen, EPR, bir parçacığın aynı zamanda konuma ve momentum sahip olduğunu kuantum teorisinde göstermeye çalışırken tek bu iki özelliğin aslında sadece tek bir anda var olduğunda ölçülebileceğini söyler. EPR sonucuna göre kuantum teorisinin tamamlanmamış olduğunu doğanın fiziksel özelliklerini dikkate alarak reddetmiştir. (Einstein, Podolsky ve Rosen 1935 şu anda fizik dergilerinde Einstein'ın en çok yayınlanan yayınıdır.) Aynı yıl, Erwin Schrödinger kelime "dolanması" kullanmış ve beyan etmiştir. Karmaşıklığın gerçek bir durum olup olmadığı sorusu hala anlaşmazlık içindedir. Bell eşitsizlikleri Einstein'ın iddialarına en güçlü meydan okumadır.

    Kuantum alan teorisi[değiştir | kaynağı değiştir]

    Paul Dirac’ın elektromanyetik alanları nitelendirmeye başlamasıyla birlikte Kuantum alan teorisi 1920'lerden sonra başlamıştır.

    Fizikteki bir alanın (örneğin manyetizma gibi) uzayda ve bölgede belirli bir etkisi vardır (örneğin magnetizma) varlığı."[24] Alan gibi gösterilen diğer etkileri yerçekimi ve statik elektrik.[25] In 2008, fizikçi Richard Hammond yazmıştır.

    Bazen kuantum alan teorisini (QFT) ve kuantum mekaniğini(QM) ayırt ederiz. Parçacıkların sayısını belirten kuantum mekaniği sabittir ve elektromanyetik gibi alanlar klasik varlıklardır. Kuantum alan teorisi başka bir adıma atlamış ve parçacıkların oluşturulmasına ve imha edilmesine izin verilmiştir. . . .

    Ayrıca o kuantum mekaniğine eklenmiştir ve kuantum mekaniğine genellikle başvurmak için kullanılır. "[26]:108

    1931 yılında, Dirac daha sonra anti-madde olarak bilinen parçacıkların varlığını önerdi. anti-matter.[27]. Dirac 1933 yılında atom teorisinin yeni üretken biçimlerini keşfetmek için Schrödinger Nobel Fizik Ödülü'nü paylaştı.[28]

    Kuantum elektrodinamiği[[değiştir | kaynağı değiştir]

    Elektromanyetik kuvvetin kuantum teorisinin ismi kuantum elektrodinamik (QED). Kuantum elektrodinamiği anlama elektromanyetizma ile başlar. Elektromanyetizma elektrodinamik olarak adlandırılabilir çünkü bu elektrik ve manyetik kuvvetler arasındaki dinamik etkileşimlerdir. Elektromanyetizma elektrik yük ile başlar.

    Elektrik yükler elektrik alanın kaynağı ve yaratıcısıdır. Elektrik alan elektrik yük taşıyan parçacıkların üzerine uygulanan kuvvetin alanıdır. Bu elektron proton ve diğerlerin arasındaki her bir taneciği içerir. Kuvvet olarak uygulanan elektrik kuvvetin hareketi, akımın akışı ve manyetik alan üretilmiştir. Manyetik alan da elektrik akıma neden olur(hareket eden elektronlar). Elektrik ve manyetik alanın etkileşimine elektromanyetizma denir.Yüklenmiş parçacıkların, elektrik akımların, elektrik alanların ve manyetik alan etkileşimlerinin fiziksel tasvirlerine elektromanyetizma denir.

    Paul Dirac 1928 yılında elektromanyetizmanın relativistik kuantum teorisini üretti. Bu modern kuantum elektro-dinamiğinin öncülerinden olmasıyla bu modern teorinin temel maddelerine sahip oldu. Ayrıca çözülemeyen sonsuzluklar sorunu bu göreli kuantum teorisi ile geliştirdi. Yıllar sonra yeniden normalleştirme ile bu sorun çözüldü. Başlangıçta onun yaratıcılarından bazıları tarafından bir şüpheli gözükse de geçici izlek olarak izlendi, yeniden normalleştirme sonunda QED fiziğin diğer alanlarında önemli bir hal aldı ve kendi içinde tutarlı bir araç olarak benimsenmiştir. Ayrıca,1940'larda Feynman diyagramları, belirli bir olaya ilişkin tüm olası etkileşimleri tasvir etmiştir. Diyagramlar elektromanyetik kuvveti etkileşen parçacıklar arasındaki fotonlar olduğunu gösterdi.

    Deneysel olarak doğrulanmış olan kuantum elektrodinamik bir tahmini örneği kuzu değiştirmesidir. Bu seslendirmeler sayesinde elektromanyetik alanın kuantum doğası otomda enerji seviyelerine ya da iyonların biraz sapmasına neden olacağını gösterir. Sonuç olarak, spektral çizgiler değişebilir veya bölünebilir.

    1960'larda fizikçiler QED son derece yüksek enerjilerde bozulduğunu fark etti. Bu tutarsızlıklardan itibaren parçacık fiziğinin Standart Model teorisinde yüksek enerjili arızaların giderildiği keşfedildi. Standart Model teorisi elektro-manyetiği ve zayıf etkileşimleri birleştirir. Bu elektro-zayıf teorisi denir.

    Yorumlama[değiştir | kaynağı değiştir]

    Fiziksel ölçümler, denklemler ve kuantum mekaniği ilgili öngörüleri tutarlı ve onay için çok yüksek bir düzeyde tuttu. Ancak, bu soyut modeller gerçek dünyanın yatan doğası hakkında soruları sorduklarında rakip cevaplar aldı

    Uygulamalar[değiştir | kaynağı değiştir]

    Kuantum mekaniği lazer, transistor, elektron mikroskopu ve manyetik direnç uygulamaları içerir. Kuantum mekanik uygulamaları özel bir sınıf gibi süper akışkan helyum ve süper iletkenler gibi Makroskopik kuantum olaylarıyla ilgilidir. Yarıiletkenlerin çalışması modern elektronik için vazgeçilmez olan diyot ve transistorun icadına yol açtı.

    [29]

    Ayrıca bakınız[değiştir | kaynağı değiştir]

    Notlar[değiştir | kaynağı değiştir]

    Kaynakça[değiştir | kaynağı değiştir]

    Diğer parçalar[değiştir | kaynağı değiştir]

    Harici linkler[değiştir | kaynağı değiştir]

    Yazı kaynağı : tr.wikipedia.org

    Yorumların yanıtı sitenin aşağı kısmında

    Ali : bilmiyorum, keşke arkadaşlar yorumlarda yanıt versinler.

    Yazının devamını okumak istermisiniz?
    Ali 10 Ay önce
    0

    bilmiyorum, keşke arkadaşlar yorumlarda yanıt versinler.

    Yorum yap