Bu sitede bulunan yazılar memnuniyetsizliğiniz halınde olursa bizimle iletişime geçiniz ve o yazıyı biz siliriz. saygılarımızla

    kayaçların yapısını oluşturan mineraller sıvı ve gaz halinde olabilir mi

    1 ziyaretçi

    kayaçların yapısını oluşturan mineraller sıvı ve gaz halinde olabilir mi bilgi90'dan bulabilirsiniz

    Kayaç

    Kayaç

    Kayaç, çeşitli minerallerin veya mineral ve taş parçacıklarının bir araya gelmesinden ya da bir mineralin çok miktarda birikmesinden meydana gelen katı birikintilerdir. Kayaç terimi eski Türkçede sahre, yeni Türkçede külte ve yabancı dillerdeki rock, roche, gestein sözcükleri karşılığı kullanılmaktadır.[1]

    Kayaçlar oluşumları sırasındaki doğal ortamı yansıtan bir çeşit belge niteliğinde görülebilir. Yer kabuğunun jeolojik gelişmesinin izleri bu çeşit kayaçlar üzerinde işlenmiştir. Bu nedenle yer tarihinin doğal belgeleri sayılırlar.[1]

    Kayaçlar, mineral yapılarına, kimyasal bileşenlerine, barındırdığı bileşenlerin dokularına ve oluşumuna neden olan etmenlere göre sınıflandırılmaktadır. Bu belirleyiciler yardımıyla yapılan sınıflandırma, üç ana kayaç türünü içerir; bunlar Magmatik kayaçlar, Tortul ve Başkalaşım kayaçlarıdır. Bu sınıflandırmada daha çok parçacıkların büyüklükleri temel alınmıştır.

    Bir kayacın başka bir kayaca dönüşümü, kayaç döngüsü adı verilen bir jeolojik modelle gösterilmektedir. Kayaçlarla ilgilenen bilim dalına petrografi adı verilir.

    Petrografi, Jeoloji'nin temel dallarından biridir.[2]

    Kayaç sınıflandırması[değiştir | kaynağı değiştir]

    Kayalar, düzenli kimyasal bir bileşikten oluşan homojen katılar olan mineral tanelerinden oluşur. Kayayı oluşturan taneler ve mineraller kimyasal bağlarla bir arada tutulur. Bir kayadaki minerallerin türleri ve bolluğu, oluşma şekline göre belirlenir.

    Çoğu kaya, silikat mineralleri, kristal kafeslerinde silikon oksit tetrahedra içeren bileşikler içerir ve bilinen tüm mineral türlerinin yaklaşık üçte birini ve yer kabuğunun yaklaşık %95'ini oluşturur.[3] Kayaçlar ve minerallerdeki silis oranı, isimlerini ve özelliklerini belirlemede önemli bir faktördür.[4]

    Kayaçlar mineral ve kimyasal bileşimi, geçirgenlik, bileşen parçacıklarının dokusu ve parçacık büyüklüğü gibi sınıflandırmaya göre sınıflandırılır. Bu fiziksel özellikler kayaları oluşturan süreçlerin sonucudur.[5] Zaman içinde kayalar, Kayaç döngüsü adı verilen jeolojik bir model tarafından tarif edildiği gibi, bir kayaç türünden diğer kayaç türüne dönüşebilir. Bu dönüşümle üç kayaç sınıfı oluşturur: Magmatik, Tortul ve Metamorfik.

    [6][ölü/kırık bağlantı]

    Magmatik kayaçlar[değiştir | kaynağı değiştir]

    Erimiş halde bir silikat hamuru durumunda olan magmanın veya akkorun yer kabuğunun derinliklerinde veya yeryüzünde soğuyarak katılaşması sonucu meydana gelen kayaçlardır. Bunların genel karakterleri ise, kristallerden oluşmuş kütle halinde kayalardır. Magmanın soğuması ve katılaşması derinlerde yavaş yavaş meydana geldiği zaman, tam kristalli plütonik kayaçlar, soğuma ve katılaşma yeryüzünde veya yeryüzüne yakın derinliklerde hızlı veya çabuk oluştuğu takdirde, volkanik ve damar kayaçları meydana gelmektedir.[7]

    Magmatik kayaçlar, dünyanın mantosunda veya kabuğunda önceden var olan kayaların kısmi erimeleriyle oluşur. Kayanın erimesine üç temel işlem neden olur. Bunlar; sıcaklıkta bir artışın olması, basınçta bir azalma olması veya bileşiminde bir değişikliğin olmasıdır. Yerkabuğunun hacimce yaklaşık %65'i magmatik kayalardan oluşur ve bu da magmatik kayaçları en bol bulunan kayaçlar haline getiriyor. Bunları %66'sı bazalt ve gabrodur, %16 granittir, %17'si granodiyorit ve diyorittir. Sadece %0.6'sı siyenit ve %0.3'ü ultramafiktir. Okyanus kabuğunun önemli birleşimi olan bazalt %99'unu oluşturur. Granitoidler olarak bilinen granit ve benzeri kıta kabuğuna hakimdir.[8][9]

    Plütonik (intrüzif) kayaçlar[değiştir | kaynağı değiştir]

    Yükselen magmanın yeryüzüne erişmeden kabuk içinde herhangi bir derinlikte yerleşmesi ve katılaşması ile oluşan kayalara denir. Derin seviyelerde yerleşen ve katılaşan magmatik kütlelere derinlik kayaları da denir.[10]

    Bunlar genellikle iyi kristalleşmiş minerallerden oluşmuş kayaçlardır. Mineraller kayaç türüne göre bir veya birkaç çeşit olabilirler.[7]

    Plütonik kayalar yer kabuğu içinde farklı biçimlerde bulunur ve buna göre adlandırılırlar. İç kuvvetlerin niteliği, yer kabuğunu oluşturan malzemenin özellikleri, yükselen magmanın akıcılığı, yoğunluğu ve hacmi bir sahadaki plütonik kütlelerin biçimini ve bulunuş tarzını belirleyen başlıca etkenlerdir. Biçimleri ve bulunuş tarzları farklı olan ve bu nedenle ayrı isimlerle adlandırılan başlıca plütonik kütle türleri batolit, lakolit, lapolit, filon(dayk), sill(tabaka filonları) ve volkan tıkaçları(nek)dır. Bunlardan alan ve hacim olarak en büyükleri olan ilk üçü genellikle plüton terimi ile açıklanırlar. Plütonların oluşumuna yol açan magmatik olayların tümüne de plütonizma denir.[10]

    Volkanik (Ekstrüzif) Kayaçlar[değiştir | kaynağı değiştir]

    Magmanın yeryüzüne çıkarak, orada soğuması sonucunda meydana gelen katılaşım kayalarına ekstrüzif kayalar veya dar anlamda volkanik kayalar denir.[10]

    Bunlara yüzey kayaçları da denir; bunlar yarı kristalli, porfirik yapılıdır. Kayaç, çoğu kez gözle görülebilen mineral fenokristalleri ve kristal olmayan, camsı bir hamurdan oluşmaktadır. Örneğin; andezit, riyolit, bazalt gibi.[7]

    Sedimanter kayaçlar[değiştir | kaynağı değiştir]

    Kayaların oluşum bakımından farklı ikinci takımını sedimanter (tortul) kayalar veya öteki adıyla sedimentitler meydana getirir. Eskiden var olan kayaların akarsular, buzullar, rüzgarlar, dalgalar gibi dış etkenler tarafından aşındırılarak sürüklenen kırıntılarının ve diğer çözülme ürünlerinin, ya da kimyasal yolla yerinde meydana gelen maddelerin normal basınç ve sıcaklık altında su üstünde veya su altındaki ortamlarda birikmesiyle sedimentler (çökeller) oluşur. Sedimentler zamanla çeşitli değişikliklere uğrarlar. Yığılan maddelerin ağırlığı altında sıkışırlar, içerdikleri su dışarı atılır, gözenekleri azalır ve hacimleri küçülür; kendi içlerinde meydana gelen kimyasal olaylarla yeni mineraller oluşabilir; taneler ve kırıntılar arasında bir çimento meydana gelir. Bütün bu süreçlerin sonucunda Sedimentler pekleşerek taşlaşır ve tortul kaya haline dönüşür. Yüzbinlerce, hatta belki milyonlarca yılı kapsayan ve sedimentlerin tortul kaya haline gelmesine yol açan bütün bu süreçlerin tümüne diajenez denir.[11]

    Bu kayaçlar kimyasal, fiziksel (kırıntılı) ve organik tortullar olmak üzere üçe ayrılır. Kimyasal tortullar, suların içindeki eriyik maddelerin çökmesi ile oluşmuş olup kireç taşı, traverten, jips ve kaya tuzu gibi örnekler barındırır. Bu tortullar, Dünya'daki tüm tortulların %65'ini kapsar. Fiziksel tortullar, kayaçların parçalanması ile oluşan kırıntılı malzemelerin oluşturduğu kayaçlar olup, konglomera, kum taşı ve kil taşı gibi örnekleri içinde bulundurur. Bu tortullar, tüm tortulların %20-25'ini kapsar. Son olarak organik tortullar, bitki ve hayvan kalıntılarının birikmesi sonucunda oluşan kayaçlar olup, petrol, kömür gibi örnekler barındırır. Bu tip tortullar, tüm tortullar içinde %10-15 kısmını kapsar. Tüm tortul kayaçlar Dünya'nın yüzeyinde veya yüzeyine yakın tabakalarında oluşur.[12]

    Fiziksel tortul kayaçlar[değiştir | kaynağı değiştir]

    Çeşitli büyüklüklerde taş ve mineral parçalarının karalarda ve denizlerdeki tortullaşma havzalarında çökelmeleri ile meydana gelen taneli - parçacıklı kayaçlardır. Değişik boyuttaki tanelerin bir çimento-maddesi ile birleşmeleri, birbirine kenetlenmeleri sonucu katı ve sıkı halde bulunan çimentolu tortul kayaçlar oluşur. örneğin; kumtaşı, konglomera, gibi. Taneleri birbirine bağlayacak, birleştirecek bir madde bulunmadığı hallerde, taneler serbest kalır ve çimentosuz tortul kayaçlar meydana gelir. Örneğin; kum, çakıl, kil gibi. Kırıntılı tortul kayaçların sınıflandırılması ve adlandırılması tanelerin boyutlarına, türlerine, biçimlerine, yuvarlak ve boylanma derecelerine, homojen ve heterojen oluşlarına ve çimento maddesinin bileşimine göre yapılır.[13]

    Organik tortul kayaçlar[değiştir | kaynağı değiştir]

    Foraminiferler, radyolaryalar, algler, süngerler ve mercanlar gibi kabuklu organizmaların kalıntılarından oluşan kayaçlardır. Organizmaların katı kısımları burada taşlaşmış, fosil haline gelmişlerdir.[2]

    Organik tortul kayaçların sınıflaması ve adlandırılması eskiden beri organizmaların kavkılarını ve iskeletlerini oluşturan başlıca maddelerin kimyasal bileşimlerine göre yapılmaktadır; Örneğin, kireçli, silisli, bitümlü, fosfatlı gibi.[2]

    Kimyasal tortul kayaçlar[değiştir | kaynağı değiştir]

    Doygun eriyiklerin çökelmesi ve tuzlu suların buharlaşması sonucu meydana gelen tortulardır. Mağaralardaki dikit ve sarkıtlar, deniz kıyılarındaki kireçli ve demirli olitler, kapalı göl kenarlarındaki tuz birikintileri ve kaynaklar etrafındaki taşlaşmalar (travertenler) kimyasal tortulların başlıca örnekleridir.[14]

    Metamorfik kayaçlar[değiştir | kaynağı değiştir]

    Tortul veya magmatik diğer kayaçların sıcaklık, basınç, gerilme ve kimyasal aktivitesi olan sıvılar etkisi ile değişmeleri, başkalaşmaları sonucu meydana gelirler. Genelllikle kristallerden oluşmuş, paralel yapılı kayaçlardır. Bunlara kristalin şistler de denir. Metamorfizma: Yer kabuğunun derinliklerinde hüküm süren değişik fiziksel ve kimyasal şartların etkisi ile kayaçlardan katı halde meydana gelen mineral değişikliği veya mineral transformasyonu olayıdır.[14]

    Mineraller belirli bir sıcaklık ve basınç altında duraylı durumda bulunurlar. Her mineralin kendine öz bir duyarlılık sıcaklığı ve basıncı vardır. Eğer sıcaklık ve basınç değerinde bir artma, bir değişme olursa, mineralde de değişme başlar, mineral aynı kimyasal bileşimde başka bir duraylı minarele dönüşür, böylece bir mineral transformasyonu olur. Metamorfizmanın aslı da budur.[14]

    Metamorfizma olayı büyük ve sıcak bir magma kütlesinin çevresinde meydana geldiği zaman kontakt veya termal metamorfizmadan; büyük bir fay veya bindirme düzlemi kenarında oluştuğu takdirde dislokasyon veya kataklastik metamorfizmadan söz edilmektedir; jeosenklinallerde (dalma-batma zonlarında) dağ oluşum hareketleri (orojenez) ile birlikte meydana gelen metamorfizmaya rejiyonal termo- dinamo metamorfizma; dip kısımlarının yavaş yavaş çökmesi ile on binlerce metre kalınlıkta tortuların (sedimentlerin) biriktiği okyanus havzalarında gelişen metamorfizmaya da çökme veya gömülme metamorfizması denilir.[14]

    Metamorfik kayaçların başlıca özelliği, bunların birbirine paralel düzlemler boyunca ve kolaylıkla yaprak yaprak veya dilim dilim ayrılmaları, bölünmeleridir.[14]

    Bu üç ana kayaç türü — magmatik, tortul ve başkalaşım — daha birçok alt dala ayrılır. Yine de bu ilintili kayaçlar arasında sert ve sıkı sınırlar yoktur. Bileşenlerinde yer alan minerallerdeki boyutların artıp azalması, bir kayacı başka bir kayaç hâline getirebilmektedir. Bu nedenle, belli özellikler için hazırlanan dereceler için hazırlanan tanımlamalar sayesinde herhangi bir kayaca isimler verilebilmektedir. Bir de bazı kayaçlar elmas yapımında kullanılır.[15]

    İnsan kullanımı[değiştir | kaynağı değiştir]

    Kayaçlar, insanoğlu için kültürel ve teknolojik anlamda büyük bir etkiye sahiptir. Homo sapiens ve diğer insansılar tarafından iki milyon yıldan beri kullanılan kayaçlar, insanlar için teknolojinin temel ögelerinden biridir. Taşların madenlerden çıkartılarak çeşitli amaçlar için kullanılması, en eski teknolojik ilerlemelerden biridir. Ancak bu süreç çeşitli yerlerde farklı madenlerin ve taşların bulunması nedeniyle farklı zamanlarda ilerleme gösterdi.

    Tarih öncesi devirler arasında Taş çağı, Bronz çağı ve Demir çağı gibi çağlar yer almaktadır. Her ne kadar Taş çağı görünürde tüm dünya medeniyetleri üzerinde sona erdiyse de, birçok kayacın, binaların ve altyapıların inşasında kullanılmasına devam edilmiştir. Kayaçlar bu anlamda kullanıldığında kesme taş adıyla anılır.

    Madencilik

    Madencilik, değerli minerallerin veya diğer jeolojik malzemelerin yeryüzünden, bir cevher gövdesinden veya tabakadan çıkarılmasıdır.[16] Terim bir de toprağın çıkarılmasını içerir. Madencilik ile geri kazanılan malzemeler arasında ana metaller, değerli metaller, demir, uranyum, kömür, elmas, kireçtaşı, petrol şist, kaya tuzu, potas, inşaat agregası ve kaya içerir. Madencilik, tarımsal süreçler yoluyla yetiştirilemeyen veya bir laboratuvar veya fabrikada yapay olarak oluşturulamayan herhangi bir malzemeyi elde etmek için gereklidir. Daha geniş anlamda madencilik, herhangi bir kaynağın (örneğin petrol, doğalgaz, tuz hatta su) topraktan çıkarılmasına denir.[17]

    Kaya ve metal madenciliği tarih öncesi çağlardan beri yapılmıştır. Modern madencilik süreçleri; maden yataklarının araştırılmasını, önerilen bir madenin kâr potansiyelinin analizini, istenen malzemelerin çıkarılmasını ve son olarak madenciliğin sona ermesinden sonra diğer kullanımlar için hazırlanması için arazinin ıslahını içerir.[18]

    Madencilik süreçleri, hem madencilik işlemleri sırasında hem de madencilik sona erdikten sonraki yıllar boyunca çevre üzerinde olumsuz etkiler yaratabilir. Bu potansiyel etkiler, dünya ülkelerinin çoğunun madencilik faaliyetlerinin olumsuz etkilerini yönetmek için düzenlemeler kabul etmesine yol açmıştır.[19]

    Kaynakça[değiştir | kaynağı değiştir]

    Dış bağlantılar[değiştir | kaynağı değiştir]

    Yazı kaynağı : tr.wikipedia.org

    Mineral

    Mineral

    Mineral doğal şekilde oluşan, homojen, belirli kimyasal bileşime sahip inorganik kristalleşmiş katı bir maddedir. Buna göre minerallerin özelliklerini şöyle sıralayabiliriz:

    Mineralojinin konusu doğal şekilde oluşan maddeleri ihtiva ettiği için bu bakımdan sınırlandırılmıştır. Teknolojinin ilerlemesiyle laboratuvarlarda sentetik olarak elde edilen kimyasal bileşikler mineral sayılmazlar. Bu yapay bileşikler halindeki katı maddelere doğada tabii halde rastlanmaz. Dolayısıyla da doğal şartlarda oluşturulamazlar. Bu tür katı maddelere "yapay mineraller" adı verilebilir. Bu tür yapay mineraller de, tabii minerallerde olduğu gibi benzer kristal iç yapılarına sahiptir.

    Minerallerin doğada veya deneysel olarak yapılan incelemelerde de gözlendiği gibi, oluşum şartları bunların belirli fizikokimyasal şartlarda (belirli sıcaklık ve basınç altında ve ortamın kimyasal durumu gibi) oluşurlar. Buradan mineralojinin bir amacının da minerallerin oluşturduğu yerkabuğunun kimyasal ve fiziksel yapısının öğrenilmesi, yerkabuğunun tarihinin bilinmesi ve yer altı kaynaklarından yararlanılması olduğunu anlıyoruz.

    Mineraller belirli bir kimyasal bileşime sahiptirler. O halde her mineral bir kimyasal formül ile ifade edilir. Minerallerin kimyasal formülleri genellikle sabittir. Ancak belirli sınırlar içinde belirli kaidelerle değişebilir. Çok ender olarak saf elementler (altın, gümüş, bakır vs) şeklinde oluşan mineraller, yerkabuğunda meydana gelen doğal fizikokimyasal olayların ürünleridir.

    Minerallerin bir diğer özelliği de inorganik oluşudur. Yerkabuğunda bulunan petrol, kömür, fosil ve reçine gibi maddeler mineralojinin kapsamına girmez. Ancak nadir de olsa kehribar gibi organik mineraller de vardır.

    Minerallerin katı olmaları düzenli bir atomsal iç yapıya sahip olduklarını gösterir. Mineral kristallerinin dış yapıları incelendiğinde düzgün geometrik dış şekilli oldukları görülür. Yine aynı şekilde iç yapılarının da düzgün olduğu görülür. Minerallerin "cıva" gibi sıvı olan tipleri de vardır.

    Mineraller homojen bir yapıya sahiptirler. Alınan bir mineral örneğinin her tarafı aynı mineralden ibaret olmalıdır. Ancak her mineralde az veya çok yabancı mineral varlığı bulunmaktadır. Yabancı madde oranının çokluğu, mineralin özelliklerini değiştirir. Esasta; gözle görülebilen boyutta homojen olması basit tanımlama için yeterlidir.

    Tanım[değiştir | kaynağı değiştir]

    Temel tanım[değiştir | kaynağı değiştir]

    Mineralin tanımı aşağıdaki kriterleri içerir:[1]

    İlk üç genel özellik son ikiliden daha az tartışılmaktadır.[6]

    Son gelişmeler[değiştir | kaynağı değiştir]

    Mineral sınıflandırma şemaları ve tanımları mineral bilimindeki son gelişmelere uymak için evrilmektedir. Son değişiklikler, hem, Dana hem Stunz sınıflandırma şemalarında organik bir sınıfın eklenmesini içermektedir. Organik sınıf, hidrokarbonlu nadir bir mineral grubunu içerir. IMA Yeni Mineraller Komisyonu ve "Mineral İsimler" 2009'da hiyerarşik bir şema kabul etmiştir. Yedi komisyon ve bu konuda çalışan dört grup yayımlanmış isimleriyle resmi şekilde listelemek üzere kurulmuştur. Bu yeni kurallara göre, " mineral türleri, kimya, kristal yapısı, oluşumu, birlikteliği, genetik tarihi veya kaynağı temel alınarak farklı şekillerde gruplandırılabilirler.[7][8] Örneğin, amacına dayanarak sınıflandırma yapılabilir."

    Ernest Nickel'in (1995) biyojenik maddelerin dışlanması evrensel olarak uygulanmamıştır. Örneğin, Lowenstam (1981), "organizmaların, bazıları biyosferde inorganik olarak oluşturulamayan çeşitli bir mineral dizisi oluşturabildiğini belirtti."ayrım, bir sınıflandırma meselesidir ve minerallerin bileşenleri ile daha az ilgilidir.[9] Skinner (2005) tüm katıları potansiyel mineraller olarak görür ve mineral krallığında, organizmaların metabolik aktiviteleri tarafından yaratılan biyomateryalleri içerir. Skinner, bir mineral olarak "biyojeokimyasal süreçlerle oluşan amorf veya kristalli element veya bileşiği" bir mineral olarak sınıflandırmak için önceki mineral tanımını genişletti.[10]

    Yüksek çözünürlüklü genetik ve X-ışını absorpsiyon spektroskopisi son gelişmeler nikel (1995) biyojenik mineral dışlama eskimiş ve Skinner (2005) biyojenik mineral dahil bir zorunluluk yapabilir mikroorganizmalar ve mineraller arasındaki biyojeokimyasal ilişkiler üzerinde vahiy sağlamaktadır.[10][11] örneğin, IMA tarafından görevlendirilen "çevresel mineraloji ve Jeokimya Çalışma Grubu" hidrosfer , atmosfer ve biyosferdeki minerallerle ilgilenir grubun kapsamı mineral oluşturan mikroorganizmaları içerir, deniz tabanının en az 1600 metre altında ve stratosfere 70 kilometre (muhtemelen mezosfere giren) derinliklerine kadar dünyayı kapsayan neredeyse her Kaya, toprak ve parçacık yüzeyinde var olan biyojeokimyasal döngüler milyarlarca yıldır minerallerin oluşumuna katkıda bulunmuştur.[12] Mikroorganizmalar metalleri çözeltiden çökeltebilir ve cevher yataklarının oluşumuna katkıda bulunur.[13][14][15] Ayrıca minerallerin çözünmesini katalize edebilirler.[16][17][18]

    UMO'nun listelemesinden önce, 60'ın üstünde biomineral keşfedilmiş, isimlendirilmiş ve yayımlanmıştı.[19] Bu mineraller, Skinner'ın tanımına göre düzgün mineraller olarak tanımlanmıştır.[20] Bu biomineraller, UMO'nun resmi mineral listesinde geçmemektedir[21], ancak bu mineral temsilcilerin birçoğu Dana'nın sınıflandırma şemasında[10] 78 mineral sınıfı arasında paylaştırılmıştır. Diğer nadir bir mineral sınıfı(öncelikle biolojik kökenli) hem sıvı hem kristal özelliklere sahip sıvı kristal mineralleri da içermektedir. Bu güne kadar, 80.000'in üzerinde sıvı kristal bileşeni tanımlanmıştır.[22][23]

    Skinner'ın mineral tanımı, minerallerin kristal halde ya da amorf şekilde olmasını göz önüne alarak incelenmesi üzerinedir[10].(Sıvı kristaller amorf şekilde olanlara dahildir). Biomineraller ve sıvı mineraller en yayın mineral hali olmasa bile, düzgün mineralin oluşumundaki limiti tanımlamamızda bize yardımcı olur.[24] Nickel'in resmi tanımı bir şeyin mineral olarak tanımlanmasını kristalliğine bağlı olduğunu özellikle belirtmiştir.

    Kayalar, cevherler, mücevherler[değiştir | kaynağı değiştir]

    Mineraller kayalara eşdeğer değildir. Taş birden fazla mineralin ya da mineraloidin bütünüdür[25]. Kireçtaşı veya kuvarsit gibi bazı kayaçlar, öncelikle kireçtaşı durumunda bir mineral – kalsit veya aragonit ve ikinci durumda kuvarstan oluşur.[26][27] Diğer kayalar anahtar (temel) minerallerin göreceli bollukları ile tanımlanabilir; bir granit kuvars, alkali feldispat ve plajiyoklaz feldispat oranları ile tanımlanır[28] . Diğer bazı taşlar ise oluşturan minerallerden çoğunlukta olan ile tanımlanır. Mesela granit, kuvarslar, alkali feldispat, ve plajiyoklasların birleşiminden oluşur. Taşlar aynı zamanda, bütünüyle, mineral olmayan materyallerden oluşabilir; örneğin kömür, genel olarak organik kökenli karbonun oluşturduğu bir tortuldur.[25][29]

    Taşlarda, bazı mineral grupları ve türleri diğerlerinden daha yaygındır. bunlara taş-oluşturan mineraller adı verilir. Bunun en önemli örnekleri kuvarslar, feldispatlar, piroksenler, amfiboleler, kalsitler ve mikalardır. Kalsitler harici, bütün bu mineraller silikattır.[30] Toplamda 150 mineral, bolluğu ya da toplanması bağlamında estetik değeri gözetilmeden, önemli kabul edilir.[31]

    Ticari olarak değerli kabul edilen mineraller endüstriyel olarak kabul edilir.Örneğin muskovit ve beyaz mika pencerelerde dolgu ve yalıtkan maddesi olarak kullanılabilir.[32] Cevherler, belirli bir elementin , tipik olarak metalin yüksek konsantrasyonuna sahip minerallerdir. Örnekleri cinnabar (HgS), bir cıva cevheri sfalerit (ZnS),bir çinko cevheri veya bir kalay cevheri olan kasiterittir (SnO2). Taşlar süs değeri olan minerallerdir ve güzelliği dayanıklılığı ve genellikle nadirliği taşsızlardan ayırt edilirler. En yaygın değerli taşların yaklaşık 35'ini oluşturan mücevher mineralleri olarak nitelendirilen yaklaşık 20 mineral türü vardır. Mücevher mineralleri genellikle birkaç çeşitte bulunur ve bu nedenle bir mineral birkaç farklı taşı oluşturabilir; örneğin yakut ve safir hem korendon, Al2O3'tür.[33]

    İsimlendirme ve sınıflandırma[değiştir | kaynağı değiştir]

    Mineraller, artan genellik sırasına göre çeşitlilik, tür, seri ve gruba göre sınıflandırılır. Temel tanım seviyesi, her biri diğerlerinden benzersiz kimyasal ve fiziksel özelliklerle ayırt edilen mineral türleridir. Örneğin, kuvars formülü, SiO 2 ve onu aynı kimyasal formülle (polimorflar olarak adlandırılır) diğer minerallerden ayıran spesifik bir kristal yapı ile tanımlanır. İki mineral türü arasında bir bileşim aralığı olduğunda, bir mineral serisi tanımlanır. Örneğin, biyotit seri, uçların değişken miktarları ile temsil edilir . Son üyeler filogopit, siderofilite,annite ve eastonit . Buna karşılık, bir mineral grubu, bir kristal yapıyı paylaşan bazı ortak kimyasal özelliklere sahip bir mineral türü grubudur. Piroksen grubu,XY(Si, Al) 2 O 6 ortak bir formülüne sahiptir, burada X ve Y, X tipik olarak Y'den daha büyük olan katyonlardır; piroksenler, ortorombik veya monoklinik olarak kristalleşen tek zincirli silikatlardır kristal sistemleri. Son olarak, bir mineral çeşidi, renk veya kristal alışkanlığı gibi bazı fiziksel özelliklere göre farklılık gösteren belirli bir mineral türüdür. Bir örnek, mor bir kuvars çeşidi olan ametisttir.[34]

    İki ortak sınıflandırma, Dana ve Strunz, mineraller için kullanılır; her ikisi de özellikle önemli kimyasal gruplar ve yapı açısından bileşime güvenir. Zamanının önde gelen jeoloğu James Dwight Dana ilk olarak Mineraloji Sistemini yayınladı 1837 yılında; 1997 itibarıyla sekizinci baskısında. Dana sınıflandırması bir mineral türüne dört bölümlü bir sayı atar. Sınıf numarası önemli kompozisyon gruplarına dayanmaktadır; tip, katyonların mineral içindeki anyonlara oranını verir ve son iki sayı, mineralleri belirli bir tip veya sınıf içindeki yapısal benzerliğe göre gruplandırır. Alman mineralog Karl Hugo Strunz için daha az kullanılan Strunz Sınıflandırması, Dana sistemine dayanır, ancak kimyasal bağların dağılımı ile ilgili olarak hem kimyasal hem de yapısal kriterleri birleştirir.[35]

    Ocak 2020 itibarıyla , 5,562 mineral türü IMA tarafından onaylanmıştır.[36] En yaygın olarak bir kişinin adını alır, ardından keşif yeri gelir; kimyasal bileşime veya fiziksel özelliklere dayanan isimler, mineral adı etimolojilerinin diğer iki ana grubudur.

    "Türler" kelimesi (Latince türlerden , "farklı bir görünüme veya görünüme sahip belirli bir tür, tür veya tür") [37], Systema Naturae'deki Carl Linnaeus'un sınıflandırma şemasından gelir . Doğal dünyayı üç krallığa (bitkiler, hayvanlar ve mineraller) ayırdı ve her birini aynı hiyerarşiye sahip olarak sınıflandırdı.[38] Azalan düzende bunlar Filum, Sınıf, Düzen, Aile, kabile, cins ve Türlerdi.

    Madde yapısı[değiştir | kaynağı değiştir]

    Minerallerin bolluğu ve çeşitliliği doğrudan kimyaları tarafından kontrol edilir bu da yeryüzündeki element bolluğuna bağlıdır. Gözlenen minerallerin çoğunluğu Yerkabuğundan elde edilir. Sekiz element, kabuktaki bolluğu nedeniyle minerallerin temel bileşenlerinin çoğunu oluşturur Kabuğun ağırlığının% 98'inden fazlasını oluşturan bu sekiz element, azalan bolluk sırasıyla: oksijen, silikon, alüminyum, demir, magnezyum, kalsiyum, sodyum ve potasyum. Oksijen ve silikon açık ara en önemli iki maddedir - oksijen kabuğun ağırlığının% 47'sini oluşturur ve silikon% 28'ini oluşturur.[39]

    Olluşan mineraller doğrudan ana vücudundökme kimyası tarafından kontrol edilir. Örneğin, demir ve magnezyum açısından zengin bir magma, olivin ve piroksenler gibi mafik mineraller; aksine, daha silika açısından zengin bir magma, feldispatlar ve kuvars gibi daha fazla Si02 içeren mineraller oluşturmak için kristalleşecektir. Bir kireçtaşı , kalsit veya aragonitte (her ikisi de CaCO 3 Kaya kalsiyum ve karbonat açısından zengin olduğu için) oluşturur. Bir mineral kimyası toplu mineraller dışında verilen bir mineral toplu kimyası benzer olmayan bir kaya buldu olmayacak bir sonucudur. Örneğin , kiyanit, Al 2 SiO 5 alüminyum açısından zengin şeylerin metamorfizminden formlar ; muhtemelen kuvarsit gibi alüminyum açısından fakir kayalarda meydana gelmez .

    Kimyasal bileşim, bir katı çözelti serisinin son üye türleri arasında değişebilir. Örneğin, plajiyoklaz feldispatlar , sodyum bakımından zengin son üye albitten (NaAlSi 3 O 8 ) kalsiyum bakımından zengin anortite (CaAl 2 Si 2 O 8), aralarında dört tanınmış ara çeşidi olan (sodyumdan kalsiyum açısından zengin): oligoklaz , andesin, labradorit ve bytownite serinin diğer örnekleri arasında magnezyum bakımından zengin forsterit ve demir bakımından zengin fayalit olivin serisi ve manganez bakımından zengin hübnerit ve demir bakımından zengin ferberit wolframit serisi bulunur .

    Koordinasyon polyhedra, bir katyonun bir anyonla nasıl çevrildiğinin geometrik temsilleridir. Mineralojide, koordinasyon polyhedra genellikle kabuktaki bolluğu nedeniyle oksijen açısından düşünülür. Silikat minerallerinin ana birimi, dört O2− çevrelenmiş bir Si4 + olan silika tetrahedrondur. Silikatın koordinasyonunu tanımlamanın alternatif bir yolu bir sayıdır: silika tetrahedron durumunda, silikonun 4'lük bir koordinasyon sayısına sahip olduğu söylenir. Çeşitli katyonlar belirli bir olası koordinasyon sayılarına sahiptir; silikon için, bileşiğin, silikonun oksijen ile altı kat (oktahedral) koordinasyonda olduğu şekilde sıkıştırıldığı çok yüksek basınçlı mineraller hariç, hemen hemen her zaman 4'tür. Daha büyük katyonlar, oksijene kıyasla göreceli boyuttaki artış nedeniyle daha büyük bir koordinasyon sayılarına sahiptir (daha ağır atomların son orbitalalt kabuğu da farklıdır). Koordinasyon sayılarındaki değişiklikler fiziksel ve mineralojik farklılıklara yol açar; örneğin, mantoda olduğu gibi yüksek basınçta, birçok mineral, özellikle olivin ve granat gibi silikatlar, silikonun oktahedral koordinasyonda olduğu bir perovskit yapısına dönüşecektir. Diğer örnekler, Al3 + 'nın koordinasyon sayısına göre farklılık gösteren alüminosilikatlar kiyanit, andalusit ve sillimanittir (polimorflar, çünkü Al2SiO5 formülünü paylaşırlar); bu mineraller basınç ve sıcaklık değişimlerine tepki olarak birbirlerinden geçiş yaparlar.[40] Silikat malzemeler söz konusu olduğunda, Si4 + 'ün Al3 + ile ikamesi, yükleri dengeleme ihtiyacı nedeniyle çeşitli minerallere izin verir.[41][42]

    Sıcaklık ve basınç ve bileşimdeki değişiklikler bir kaya örneğinin mineralojisini değiştirir. Bileşimdeki değişiklikler, hava koşulları veya metasomatizma (hidrotermal alterasyon ) gibi işlemlerden kaynaklanabilir. Ev sahibi kaya, farklı fiziksel rejimlere tektonik veya magmatik harekete girdiğinde sıcaklık ve basınçtaki değişiklikler meydana gelir. Termodinamik değişiklikler koşullar, mineral topluluklarının yeni mineraller üretmek için birbirleriyle reaksiyona girmesini elverişli kılar; bu nedenle, iki kayanın benzer bir mineralojiye sahip olmadan aynı veya çok benzer bir toplu kaya kimyasına sahip olması mümkündür. Bu mineralojik değişim süreci Kaya döngüsü ile ilgilidir . Bir dizi mineral reaksiyon örneği aşağıdaki gibidir.[43]

    Ortoklaz feldispat (KAlSi 3 O 8), plütonik bir magmatik kayaç olan granitte yaygın olarak bulunan bir mineraldir. Hava şartlarına maruz kalıyorsunuz, bir tortul mineral ve silisik asit olan kaolinit (Al 2 Si 2 O 5 (OH) 4 oluşturmak için reaksiyona girer)

    Düşük dereceli metamorfik koşullar altında, kaolinit, pirofilit (Al 2 Si 4 O 10 (OH) 2 oluşturmak için kuvars ile reaksiyona girer):

    Metamorfik derece arttıkça, pirofilit kiyanit ve kuvars oluşturmak için reaksiyona girer:

    Alternatif olarak bir mineral, reaksiyon yapmadan sıcaklık ve basınçtaki değişikliklerin bir sonucu olarak kristal yapısını değiştirebilir. Örneğin kuvars, yüksek sıcaklıklarda tridimit ve kristobalit ve yüksek basınçlarda koesit gibi çeşitli Si02 polimorflarına dönüşecektir. [56]

    Fiziksel özellikler[değiştir | kaynağı değiştir]

    Minerallerin sınıflandırılması basitten zora kadar değişir. Bir mineral birkaç fiziksel özellik ile tanımlanabilir, bazıları eşit konum olmadan tam tanımlama için yeterlidir.Diğer durumlarda, mineraller sadece daha karmaşık optik, kimyasal veya X-ışını kırınım analizi ile sınıflandırılabilir; bununla birlikte bu yöntemler maliyetli ve zaman alıcı olabilir. Sınıflandırma için uygulanan fiziksel özellikler arasında kristal yapı ve alışkanlık, sertlik, parlaklık, şeffaflık, renk, çizgi, yarılma ve kırık ve özgül ağırlık yer alır. Diğer daha az genel testler arasında flüoresans, fosforesans, manyetizma, radyoaktivite, mukavemet (şekil veya formun mekanik kaynaklı değişikliklerine tepki), piezoelektriklik ve seyreltik asitlere reaktivite bulunmaktadır.

    Kristal yapısı ve alışkanlığı[değiştir | kaynağı değiştir]

    Ana maddeler: Kristal sistemi ve kristal alışkanlığı

    Ayrıca bakınız: Kristal eşleştirme

    Kristal yapı, bir mineralin iç yapısındaki atomların düzenli geometrik mekansal düzenlemesinden kaynaklanır. Bu kristal yapı, genellikle kristalin aldığı geometrik formda ifade edilen düzenli iç atomik veya iyonik düzenlemeye dayanır. Mineral taneleri görülemeyecek kadar küçük veya düzensiz şekilli olsa bile, alttaki kristal yapı her zaman periyodiktir ve X-ışını kırınımı ile belirlenebilir. Mineraller tipik olarak simetri içerikleriyle tanımlanır. Kristaller, simetrileriyle farklılık gösteren 32 nokta grubu ile sınırlıdır. Bu gruplar sırayla daha geniş kategoriler halinde sınıflandırılır, bunlardan en geniş olanı altı kristal ailedir.

    Bu aileler, üç kristalografik eksenin göreceli uzunlukları ve aralarındaki açılar ile tanımlanabilir; bu ilişkiler, daha dar nokta gruplarını tanımlayan simetri işlemlerine karşılık gelir. Bunlar aşağıda özetlenmiştir; A, b ve C eksenleri temsil eder ve α, β, γ, ilgili kristalografik eksenin karşısındaki açıyı temsil eder (örneğin α, a ekseninin karşısındaki açıdır, yani. B ve c eksenleri arasındaki açı)

    Altıgen kristal ailesi de iki kristal sisteme ayrılmıştır - üç kat simetri eksenine sahip olan üçgen ve altı kat simetri eksenine sahip olan altıgen.

    Kimya ve kristal yapısı birlikte bir mineral tanımlar. 32 nokta grubuna kısıtlama getirildiğinde, farklı kimyanın mineralleri aynı kristal yapıya sahip olabilir. Örneğin, halit (NaCl), galena (PbS) ve periklazın (MgO) hepsi, farklı bileşen elemanları arasında benzer bir stokiyometriye sahip oldukları için hekzaoktahedral nokta grubuna (izometrik aile) aittir. Aksine, polimorflar kimyasal bir formülü paylaşan ancak farklı bir yapıya sahip olan mineral gruplandırmasıdır. Örneğin, her iki demir sülfür olan pirit ve markazit, FeS2 formülüne sahiptir; ancak birincisi izometrikken ikincisi ortorombiktir. Bu polimorfizm jenerik AX2 formülü ile diğer sülfidlere uzanır; bu iki grup topluca pirit ve markazit grupları olarak bilinir.[44]

    Polimorfizm saf simetri içeriğinin ötesine uzanabilir. Alüminosilikatlar, Al2SiO5 kimyasal formülünü paylaşan üç mineral grubudur - kiyanit, andalusit ve sillimanit -. Kiyanit trisinikken, endülit ve sillimanit hem ortorombiktir hem de dipiramidal grup grubuna aittir. Bu farklılıklar, alüminyumun kristal yapı içinde nasıl koordine edildiğine bağlı olarak ortaya çıkar. Tüm minerallerde, bir alüminyum iyonu daima oksijenle altı kat koordinasyondadır. Silikon, genel bir kural olarak, tüm minerallerde dört kat koordinasyondadır; bir istisna stishovite (SiO2, rutil yapıya sahip ultra yüksek basınçlı bir kuvars polimorfu) gibi bir durumdur. [60] Kiyanitte, ikinci alüminyum altı kat koordinasyondadır; kimyasal formülü kristal yapısını yansıtmak için Al[6]Al[6]SiO5, olarak ifade edilebilir. Endülit beş kat koordinasyonda ikinci alüminyuma sahiptir (Al[6]Al[5]SiO5) ve sillimanit buna dört kat koordinasyonda (Al[6]Al[4]SiO5) sahiptir.[44]
    Kristal yapı ve kimyadaki farklılıklar mineralin diğer fiziksel özelliklerini büyük ölçüde etkiler. Elmas ve grafit karbon allotropları çok farklı özelliklere sahiptir; elmas en sert doğal maddedir, adamantin parlaklığına sahiptir ve izometrik kristal ailesine aittir, oysa grafit çok yumuşaktır, yağlı bir parlaklığa sahiptir ve altıgen ailede kristalleşir. Bu fark, bağlanma farklılıklarından kaynaklanmaktadır. Elmasta, karbonlar sp3 hibrit orbitallerdedir, yani her bir karbonun dört yüzlü kombine bir tetrahedral tarzda kovalent olarak bağlandığı bir çerçeve oluştururlar; Öte yandan, grafit sp2 hibrit orbitallerindeki karbon tabakalarından oluşur, burada her karbon sadece üç tanesine kovalent olarak bağlanır. Bu tabakalar çok daha zayıf van der Waals kuvvetleri tarafından bir arada tutulur ve bu tutarsızlık büyük makroskopik farklılıklara neden olur.[45]

    Eşleştirme, tek bir mineral türünün iki veya daha fazla kristalinin birleşimidir. Eşleştirmenin geometrisi mineralin simetrisi ile kontrol edilir. Sonuç olarak, temas ikizleri, ağsı ikizler, genleşmiş ikizler, penetrasyon ikizleri, siklik ikizler ve polisentetik ikizler dahil olmak üzere çeşitli ikizler vardır. Temas veya basit İkizler, bir düzlemde birleştirilen iki kristalden oluşur; bu tür eşleştirme spinel'de yaygındır. Ağlı İkizler, ortak rutil içinde, örgü benzeyen kristaller birbirine vardır. Geniküle edilmiş İkizler, ikizin başlamasından kaynaklanan ortada bir viraja sahiptir. Penetrasyon ikizleri, birbirine dönüşen İki tek kristalden oluşur; bu eşleştirme örnekleri çapraz şekilli staurolit içerir İkizler ve Carlsbad ortoklazda eşleştirme. Döngüsel ikizlere dönme ekseni etrafında tekrarlanan eşleştirme neden olur. Bu tür eşleştirme, üç, dört, beş, altı veya sekiz kat eksen etrafında gerçekleşir ve karşılık gelen desenlere threelings, fourlings, fivelings, sixlings ve eightlings denir. Altılı aragonit yaygındır. Polisentetik İkizler, tekrarlayan ikizlerin varlığı yoluyla döngüsel ikizlere benzer; bununla birlikte, dönme ekseni etrafında meydana gelmek yerine, polisentetik eşleştirme, genellikle mikroskobik ölçekte paralel düzlemler boyunca gerçekleşir.[46][47]

    Kristal alışkanlığı, kristalin genel şeklini ifade eder. Bu özelliği tanımlamak için çeşitli terimler kullanılır. Yaygın alışkanlıklar arasında natrolit, kanatlı, dendritik (doğal bakırda yaygın olan ağaç deseni) gibi iğne benzeri kristalleri tanımlayan asiküler, granat, prizmatik (bir yönde uzamış) ve sekanstan farklıdır. birincisinin platili olma alışkanlığı, buna karşılık ikincisinin tanımlanmış bir uzaması vardır. Kristal form ile ilgili olarak, kristal yüzlerin kalitesi, özellikle bir petrografik mikroskopla, bazı minerallerin teşhisidir. Euhedral kristaller tanımlanmış bir dış şekle sahipken, anhedral kristaller yoktur; bu ara biçimlere subkedral denir.[48][49]

    Sertlik[değiştir | kaynağı değiştir]

    Ana madde: Mohs mineral sertlik skalası

    Bir mineralin sertliği, çizilmeye daha fazla ne kadar dayanabileceğini tanımlar. Bu fiziksel özellik, mineralin kimyasal bileşimi ve kristal yapısı ile kontrol edilir.

    Bu mineralin sertliği, yapısının bir fonksiyonu olan tüm taraflar için mutlaka sabit değildir; kristalografik zayıflık, bazı yönleri diğerlerinden daha yumuşak hale getirir.[50]

    En yaygın ölçüm ölçeği ordinal Mohs sertlik ölçeğidir. Ön göstergeyle tanımlanan, daha yüksek bir endekse sahip bir mineral, altındakileri çizer. Ölçek talk, bir fillosilikat, elmas, en zor doğal malzeme olan bir karbon polimorf arasında değişmektedir. Ölçek aşağıda verilmiştir:[51]

    Parlaklık ve Diaphaneity[değiştir | kaynağı değiştir]

    Parlaklık, ışığın mineralin yüzeyinden, kalitesi ve yoğunluğu açısından nasıl yansıttığını gösterir. Metalik ve metalik olmayan Kategorilere ayrılan bu özelliği tanımlamak için kullanılan çok sayıda nitel terim vardır. Metalik ve submetalik mineraller metal gibi yüksek yansıtma özelliğine sahiptir; bu parlaklığa sahip minerallerin örnekleri galena ve pirittir. Metalik olmayan cilalar şunları içerir: elmas gibi adamantin; silikat minerallerinde çok yaygın olan camsı bir parlaklık olan vitreus; Talk ve apofilit gibi inci; granat grubunun üyeleri gibi reçineli; asbestiform krizotil gibi lifli minerallerde yaygın olan ipeksidir..[52]

    Bir mineralin diyafanlığı, ışığın içinden geçme yeteneğini tanımlar. Şeffaf mineraller, içinden geçen ışığın yoğunluğunu azaltmaz. Şeffaf bir mineral örneği muskovittir (potasyum mika); bazı çeşitler pencereler için yeterince açıktır. Yarı saydam mineraller, bir miktar ışığın geçmesine izin verir, ancak şeffaf olanlardan daha azdır. Jadeit ve nefrit (yeşimin mineral formları bu özelliğe sahip minerallerin örnekleridir). Işığın geçmesine izin vermeyen minerallere opak denir.[53][54]

    Bir mineralin diyafanlığı, numunenin kalınlığına bağlıdır. Bir mineral yeterince ince olduğunda (örneğin, petrografi için ince bir kesitte), bu özellik bir el örneğinde görülmese bile şeffaf hale gelebilir. Buna karşılık, Hematit veya pirit gibi bazı mineraller ince kesitte bile opaktır.[54]

    Renk Ve Çizgi[değiştir | kaynağı değiştir]

    Renk, bir mineralin en belirgin özelliği olup ancak genellikle tanı koymaz.[54] Elektronlarla etkileşime giren elektromanyetik radyasyondan kaynaklanır. (Mineraller için geçerli olmayan akkor durum hariç).[55] İki geniş element sınıfı (idiokromatik ve allochromatic), bir mineralin rengine katkıları ile tanımlanır: İdiokromatik elementler bir mineralin bileşimi için gereklidir; bir mineralin rengine katkıları tanısal.[56][57] Bu tür minerallerin örnekleri malakit (yeşil) ve azurittir (mavi). Buna karşılık, minerallerdeki allokromatik elementler, safsızlıklar olarak eser miktarlarda bulunur. Böyle bir mineralin bir örneği, mineral korundumun yakut ve Safir çeşitleri olacaktır.[57] Psödokromatik minerallerin renkleri, ışık dalgalarının müdahalesinin sonucudur. Örnekler labradorit ve borniti içerir.

    Basit vücut rengine ek olarak, mineraller renklerin oynanması, asterizm, chatoyancy, yanardönerlik, kararma ve pleokroizm gibi çeşitli ayırt edici optik özelliklere sahip olabilir. Bu özelliklerin bazıları renk değişkenliği içerir. Opal'de olduğu gibi renk oyunu, açıldığında farklı renkleri yansıtan örnekle sonuçlanır, pleokroizm ise ışık farklı bir yönde bir mineralden geçerken renk değişimini açıklar. Yanardönerlik, ışığın kristal yüzeyinde bir kaplamayı, bölünme düzlemlerini veya kimyada küçük geçişleri olan katmanları dağıttığı çeşitli renk oyunudur.[58] buna karşılık, opal'deki renklerin oyunu, fiziksel yapısı içindeki sıralı mikroskobik silika kürelerinden ışığın kırılması nedeniyle oluşur.[59] Chatoyancy ("kedi gözü"), numunenin döndürülmesiyle gözlenen dalgalı renk bantlamasıdır; asterizm, çeşitli chatoyancy, mineral tahıl üzerinde bir yıldızın görünümünü verir. İkinci özellik özellikle mücevher kalitesinde korundumda yaygındır.[58][59]

    Bir mineral çizgi ya da vücut rengi ile aynı olmayabilir toz halinde bir mineral rengini ifade eder.[57] Bu özelliği test etmenin en yaygın yolu, porselenden yapılmış ve beyaz veya siyah renkli bir çizgi plakası ile yapılır. Bir mineralin çizgisi eser elementlerden bağımsızdır.[56] Veya herhangi bir ayrışma yüzeyi.[57] Bu özelliğin ortak bir örneği, el örneğinde siyah, gümüş veya kırmızı renkli, ancak kiraz kırmızısı ila kırmızımsı-kahverengi bir çizgi olan Hematit ile gösterilmiştir.[57] Streak, vücut rengi allochromatic elementler tarafından oluşturulan metalik olmayan minerallerin aksine, metalik mineraller için daha belirgindir. Çizgi testi, mineralin sertliği ile sınırlandırılır, çünkü bunun yerine 7 tozdan daha sert olan çizgi plakası.[57]

    Bölünme, ayrılık, kırılma ve azim;[değiştir | kaynağı değiştir]

    Tanım olarak, mineraller karakteristik bir atomik düzenlemeye sahiptir. Bu kristal yapıdaki zayıflık zayıflık düzlemlerine neden olur ve bu düzlemler boyunca bir mineralin kırılması bölünme olarak adlandırılır. Bölünme kalitesi, mineralin ne kadar temiz ve kolay kırıldığına bağlı olarak tanımlanabilir; ortak tanımlayıcılar, azalan kalite sırasına göre, "mükemmel", "iyi", "farklı" ve "zayıf"dır. Özellikle şeffaf minerallerde veya ince kesitte, bölünme, yandan bakıldığında düzlemsel yüzeyleri işaretleyen bir dizi paralel çizgi olarak görülebilir. Bölünme mineraller arasında evrensel bir özellik değildir; örneğin, yoğun olarak birbirine bağlı silika tetrahedradan oluşan kuvars, parçalanmasına izin verecek kristalografik bir zayıflığa sahip değildir. Buna karşılık, mükemmel bazal bölünmeye sahip olan mikalar, çok zayıf bir şekilde bir arada tutulan silika tetrahedra tabakalarından oluşur.[60][61]

    Bölünme kristalografinin bir fonksiyonu olduğundan, çeşitli bölünme türleri vardır. Bölünme tipik olarak bir, iki, üç, dört veya altı yönde gerçekleşir. Bir yönde bazal bölünme, mikaların ayırt edici bir özelliğidir. İki yönlü bölünme prizmatik olarak tanımlanır ve amfiboller ve piroksenler gibi minerallerde oluşur. Galena veya Halit gibi mineraller, 90° 'de üç yönde kübik (veya izometrik) bölünmeye sahiptir; üç bölünme yönü mevcut olduğunda, ancak kalsit veya rhodochrosite gibi 90°' de değil, rhombohedral bölünme olarak adlandırılır. Oktahedral bölünme (dört yön) florit ve elmasta bulunur ve sfalerit altı yönlü dodekahedral bölünmeye sahiptir.[60][61]

    Birçok bölünmeye sahip mineraller, tüm yönlerde eşit derecede iyi kırılmayabilir; örneğin, kalsit üç yönde iyi bölünmeye sahiptir, ancak alçı bir yönde mükemmel bölünmeye ve diğer iki yönde zayıf bölünmeye sahiptir. Bölünme düzlemleri arasındaki açılar mineraller arasında değişir. Örneğin, amfiboller çift zincirli silikatlar ve piroksenler tek zincirli silikatlar olduğundan, bölünme düzlemleri arasındaki açı farklıdır. Piroksenler yaklaşık 90° ' de iki yönde bölünürken, amfiboller yaklaşık 120° ve 60°ile ayrılmış iki yönde belirgin bir şekilde bölünürler. Bölünme açıları, bir iletkene benzer bir temas gonyometresi ile ölçülebilir.[60][61]

    Bazen "yanlış bölünme" olarak adlandırılan ayrılık, görünüşte bölünmeye benzer, ancak bunun yerine sistematik zayıflığın aksine mineraldeki yapısal kusurlar tarafından üretilir. Ayırma, Bir mineralin kristalinden kristaline değişir, oysa atomik yapı bu özelliğe izin verirse, belirli bir mineralin tüm kristalleri parçalanır. Genel olarak, ayrılık bir kristale uygulanan bazı streslerden kaynaklanır. Gerilmelerin kaynakları arasında deformasyon (örneğin basınçta bir artış), ekssolüsyon veya eşleştirme bulunur. Genellikle ayrılık gösteren mineraller arasında piroksenler, Hematit, manyetit ve korundum bulunur.[60][62]

    Bir mineral bölünme düzlemine karşılık gelmez bir yönde kırıldığında, kırılmış olarak adlandırılır. Birkaç düzensiz kırık türü vardır. Klasik örnek, kuvars gibi konkoidal kırıktır; pürüzsüz kavisli çizgilerle işaretlenmiş yuvarlak yüzeyler oluşturulur. Bu tip kırık sadece çok homojen minerallerde oluşur. Diğer kırık türleri lifli, kıymık ve hackly'dir. İkincisi, kaba, pürüzlü bir yüzey boyunca bir kopmayı tanımlar; bu özelliğin bir örneği doğal bakırda bulunur.[63]

    Mukavemet hem bölünme hem de kırılma ile ilgilidir. Kırılma ve bölünme, bir mineral kırıldığında oluşan yüzeyleri tanımlarken, mukavemet, bir mineralin bu kırılmaya ne kadar dirençli olduğunu açıklar. Mineraller kırılgan, sünek, dövülebilir, sekstil, esnek veya elastik olarak tanımlanabilir.[64]

    Özgül Ağırlık[değiştir | kaynağı değiştir]

    Özgül Ağırlık, bir mineralin yoğunluğunu sayısal olarak tanımlar. Yoğunluğun boyutları kütle birimlerle hacme bölünür: kg / m3 veya g/cm3. Özgül Ağırlık, bir mineral numunesinin ne kadar suyun yer değiştirdiğini ölçer. Numunenin kütlesinin bölümü ve havadaki numunenin ağırlığı ile Sudaki karşılık gelen ağırlığı arasındaki fark olarak tanımlanan Özgül Ağırlık, birimsiz bir orandır. Çoğu mineral arasında, bu özellik teşhis değildir. Kaya oluşturan mineraller-tipik olarak silikatlar veya bazen karbonatlar–2.5-3.5 özgül ağırlığına sahiptir.[65]

    Yüksek Özgül Ağırlık, bir mineralin teşhis özelliğidir. Kimyada bir varyasyon (ve sonuç olarak, mineral sınıfı) özgül ağırlıktaki bir değişiklikle ilişkilidir. Daha yaygın mineraller arasında, oksitler ve sülfitler, daha yüksek atomik kütleye sahip elementleri içerdikleri için daha yüksek bir özgül ağırlığa sahip olma eğilimindedir. Bir genelleme, metalik veya adamantin parlaklığına sahip minerallerin, metalik olmayan bir parlaklığa sahip olanlardan daha yüksek özgül ağırlığa sahip olma eğiliminde olmasıdır. Örneğin, Hematit, Fe2O3, 5.26[66] özgül ağırlığına sahipken, Galena, PbS, sırasıyla yüksek demir ve kurşun içeriğinin bir sonucu olan 7.2–7.6,[67] özgül ağırlığına sahiptir. Yerli metallerde çok yüksek bir Özgül Ağırlık çok belirgin hale gelir; demir göktaşlarında yaygın olan bir demir-nikel alaşımı olan kamasit, 7.9 özgül ağırlığına sahiptir,[68] ve altın 15 ile 19.3 arasında gözlenen bir özgül ağırlığa sahiptir.[65][69]

    Diğer özellikler[değiştir | kaynağı değiştir]

    Mineralleri teşhis etmek için diğer özellikler kullanılabilir. Bunlar daha az geneldir ve belirli minerallere uygulanır.

    Seyreltik asit (genellikle %10 HCl) bir mineral üzerine bırakarak, karbonatları diğer mineral sınıflarından ayırmaya yardımcı olur. Asit karbonat ([CO3]2−) grubu ile reaksiyona girer, bu da etkilenen bölgenin efervesce olmasına neden olur ve karbondioksit gazı verir. Bu test, minerali orijinal kristal formunda veya toz halinde test etmek için daha da genişletilebilir. Bu testin bir örneği, kalsiti dolomitten, özellikle kayaların içinde (sırasıyla kireçtaşı ve dolomit) ayırt ederken yapılır. Kalsit hemen asit içinde effervesces, asit ise toz Dolomite (genellikle bir kayadaki çizilmiş bir yüzeye), effervesce için uygulanmalıdır.[70] zeolit mineralleri asit içinde efervesce olmaz; bunun yerine, 5-10 dakika sonra buzlu hale gelir ve bir gün boyunca asit içinde bırakılırsa, çözülür veya bir silika jel haline gelir.[71]

    Test edildiğinde, manyetizma minerallerin çok göze çarpan bir özelliğidir. Yaygın mineraller arasında manyetit bu özelliği güçlü bir şekilde sergiler ve manyetizma da pirotit ve ilmenitte güçlü olmasa da mevcuttur.[70] bazı mineraller elektriksel özellikler sergiler – örneğin kuvars piezoelektriktir - ancak elektriksel özellikler, eksik veriler ve doğal varyasyon nedeniyle mineraller için tanı kriterleri olarak nadiren kullanılır.[72]

    Mineraller ayrıca tat veya koku için test edilebilir. Halit, NaCl, sofra tuzudur; potasyum taşıyan meslektaşı sylvite, belirgin bir acı tada sahiptir. Sülfitler, özellikle numuneler kırıldığı, reaksiyona girdiği veya toz haline getirildiği için karakteristik bir kokuya sahiptir.[70]

    Radyoaktivite nadir bir özelliktir; mineraller radyoaktif elementlerden oluşabilir. Uraninit, autunite ve carnotite gibi uranyum veya iz safsızlıklar gibi tanımlayıcı bir bileşen olabilirler. İkinci durumda, radyoaktif bir elementin çürümesi mineral kristale zarar verir; radyoaktif bir halo veya pleokroik halo olarak adlandırılan sonuç, ince kesitli petrografi gibi çeşitli tekniklerle gözlemlenebilir.[70]

    Sınıflandırma[değiştir | kaynağı değiştir]

    Yerkabuğunun bileşimi silikon ve oksijenin hakim olduğu için, silikat elementleri Kaya oluşumu ve çeşitliliği açısından en önemli mineral sınıfıdır. Bununla birlikte; silikat olmayan mineraller, özellikle cevher olarak büyük ekonomik öneme sahiptir.[73][74]

    Silikat olmayan mineraller, doğal elementleri, sülfitleri, halojenürleri, oksitleri ve hidroksitleri, karbonatları ve nitratları, boratları, sülfatları, fosfatları ve organik bileşikleri içeren baskın kimyaları ile diğer bazı sınıflara ayrılır. Silikat olmayan mineral türlerinin çoğu nadirdir (yerkabuğunun toplam %8'ini oluşturur), ancak bazıları kalsit, pirit, manyetit ve Hematit gibi nispeten yaygındır. Silikatsızlarda gözlenen iki ana yapısal stil vardır: yakın paketleme ve silikat benzeri bağlantılı tetrahedra. yakın paketlenmiş yapılar, interstisyel alanı en aza indirirken atomları yoğun bir şekilde paketlemenin bir yoludur. Altıgen yakın paketleme, diğer her katmanın aynı olduğu istifleme katmanlarını ("ababab") içerirken, kübik yakın paketleme, üç tabakadan oluşan istifleme gruplarını ("abcabcabc") içerir. Bağlı silika tetrahedra analogları SO4 (sülfat), PO4 (fosfat), AsO4 (arsenat) ve VO4 (vanadat) içerir. Silikatlar, silikat minerallerinden daha fazla elementleri konsantre ettikleri için büyük ekonomik öneme sahiptir.[75]

    Bugüne kadar minerallerin en büyük gruplama silikatlar vardır; çoğu kayalar daha büyük oluşur 95 % silikat mineraller, ve üzerinde 90 % yerkabuğunun bu minerallerin oluşmaktadır.[76] Silikatların iki ana bileşeni, yer kabuğundaki en bol iki element olan silikon ve oksijendir. Silikat minerallerindeki diğer ortak elementler, Alüminyum, magnezyum, demir, kalsiyum, sodyum ve potasyum gibi Yerkabuğundaki diğer ortak elementlere karşılık gelir.[77] Bazı önemli Kaya oluşturan silikatlar feldispat, kuvars, olivinler, piroksenler, amfiboller, granatlar ve mikaları içerir.

    Silikatlar[değiştir | kaynağı değiştir]

    Bir silikat mineralinin temel birimi [SiO4] 4-tetrahedrondur. Vakaların büyük çoğunluğunda, silikon oksijen ile dört kat veya tetrahedral koordinasyondadır. Çok yüksek basınçlı durumlarda, silikon, perovskite yapısında veya kuvars polimorf stishovit (SiO2) gibi altı kat veya oktahedral koordinasyonda olacaktır. İkinci durumda, mineral artık bir silikat yapısına sahip değildir, ancak rutil (TiO2) ve basit oksitler olan ilişkili grubuna sahiptir. Bu silika tetrahedra daha sonra tek boyutlu zincirler, iki boyutlu levhalar ve üç boyutlu çerçeveler gibi çeşitli yapılar oluşturmak için bir dereceye kadar Polimerize edilir. Tetrahedra'nın polimerizasyonunun gerçekleşmediği temel silikat minerali, baz 4 yükünü dengelemek için diğer elementleri gerektirir. Diğer silikat yapılarda, elde edilen negatif yükü dengelemek için farklı element kombinasyonları gereklidir. İyonik yarıçap ve şarjdaki benzerlik nedeniyle Si4+ ' nın al3 + ile ikame edilmesi yaygındır; bu durumlarda, [AlO4]5− tetrahedra, ikame edilmemiş tetrahedra ile aynı yapıları oluşturur, ancak şarj dengeleme gereksinimleri farklıdır.[51]

    Polimerizasyon derecesi, hem oluşan yapı hem de kaç tane tetrahedral köşenin (veya Koordinatör oksijenin) paylaşıldığı (tetrahedral bölgelerdeki alüminyum ve silikon için) tanımlanabilir.[78] Ortosilikatlar (veya nesosilikatlar) polyhedra'nın hiçbir bağlantısına sahip değildir, bu nedenle tetrahedra hiçbir köşeyi paylaşmaz. Disilikatlar (veya sorosilikatlar) bir oksijen atomunu paylaşan iki tetrahedraya sahiptir. İnosilikatlar zincir silikatlardır; tek zincirli silikatlar iki paylaşılan köşeye sahipken, çift zincirli silikatlar iki veya üç paylaşılan köşeye sahiptir. Fillosilikatlarda, üç paylaşılan oksijeni gerektiren bir tabaka yapısı oluşur; çift zincirli silikatlar durumunda, bazı tetrahedra, aksi takdirde bir tabaka yapısının ortaya çıkacağı için üç yerine iki köşeyi paylaşmalıdır. Çerçeve silikatlar veya tektosilikatlar, dört köşeyi paylaşan tetrahedra'ya sahiptir. Halka silikatlar veya siklosilikatlar, döngüsel yapıyı oluşturmak için iki köşeyi paylaşmak için sadece tetrahedra'ya ihtiyaç duyar.[79]

    Silikat alt sınıfları, azalan polimerizasyon sırasına göre aşağıda açıklanmıştır.

    Çerçeve silikatları olarak da bilinen tektosilikatlar, en yüksek polimerizasyon derecesine sahiptir. Bir tetrahedra'nın tüm köşeleri paylaşıldığında, silikon: oksijen oranı 1:2 olur. Örnekler kuvars, feldispat, feldspathoidler ve zeolitlerdir. Çerçeve silikatlar, güçlü kovalent bağların bir sonucu olarak özellikle kimyasal olarak kararlı olma eğilimindedir.[80]

    Yerkabuğunun %12'sini oluşturan kuvars (SiO2) en bol mineral türüdür. Yüksek kimyasal ve fiziksel direnci ile karakterizedir. Kuvars, yüksek sıcaklıklarda tridimit ve cristobalite, yüksek basınçlı coesite ve ultra yüksek basınçlı stishovite dahil olmak üzere çeşitli polimorflara sahiptir. İkinci mineral sadece Dünya'da göktaşı etkileri ile oluşturulabilir ve yapısı o kadar çok oluşmuştur ki, bir silikat yapısından rutile (TiO2) dönüşmüştür. Dünya yüzeyinde en kararlı olan silika polimorfu α-kuvarstır. Muadili β-kuvars, sadece yüksek sıcaklıklarda ve basınçlarda bulunur(1 barda 573 °C'nin altındaki α-kuvars değişiklikleri). Bu iki polimorf, bağların "bükülmesi" ile farklılık gösterir; yapıdaki bu değişiklik, β-kuvars α-kuvartzdan daha büyük simetri verir ve bu nedenle yüksek kuvars (β) ve düşük kuvars (α) olarak da adlandırılır.[76][81]

    Feldispat, Yerkabuğundaki en bol gruptur ve yaklaşık %50'dir. Feldispatlarda, Al3+, katyonların eklenmesiyle hesaba katılması gereken bir yük dengesizliği yaratan Si4 + yerine geçer. Baz yapısı ya olur [AlSi3O8]− veya [Al2Si2O8] 2 – vardır 22 feldispat mineral türleri, iki ana alt gruba ayrılır-alkali ve plajiyoklaz - ve iki daha az yaygın gruplar – celsian ve banalsite. Alkali feldispatlar en çok potasyum bakımından zengin ortoklaz ve sodyum bakımından zengin albit arasında bir seride bulunur; plajiyoklaz durumunda, en yaygın seri albitten kalsiyum açısından zengin anortite kadar değişir. Kristal eşleştirme feldispatlarda, özellikle plajiyoklazda polisentetik ikizlerde ve alkali feldispatlarda Carlsbad ikizlerinde yaygındır. İkinci alt grup bir eriyikten yavaşça soğursa, ekssolüsyon lamelleri oluşturur, çünkü iki bileşen – ortoklaz ve albit – katı çözelti içinde kararsızdır. Exsolution el numunesinde kolayca gözlemlenebilir mikroskobik bir ölçekte olabilir; Perthitic doku formları zaman Na-zengin feldispat bir k-zengin konak exsolve. K açısından zengin feldispatın Na açısından zengin bir konakta çözdüğü karşıt doku (antipertitik) çok nadirdir.[82]

    Feldspatoidler yapısal olarak feldspata benzerdir, ancak Al3+ile daha fazla ikame yapılmasına izin veren Si eksikliği koşullarında oluşmaları bakımından farklılık gösterir. Sonuç olarak, feldspatoidler kuvars ile ilişkilendirilemez. Bir feldspatoidin ortak bir örneği nefelindir ((Na, K) AlSiO4); alkali feldspat ile karşılaştırıldığında, nefelin feldspatta 1:6'nın aksine 1:2'lik bir Al2O3:SiO2 oranına sahiptir.[83] Zeolitler genellikle iğneler, plakalar veya bloklu kütlelerde meydana gelen ayırt edici kristal alışkanlıklarına sahiptir. Düşük sıcaklıklarda ve basınçlarda su varlığında oluşurlar ve yapılarında kanallar ve boşluklar vardır. Zeolitler, özellikle atık su arıtımında çeşitli endüstriyel uygulamalara sahiptir.[84]

    Fillosilikatlar Polimerize tetrahedra tabakalarından oluşur. Karakteristik bir silikon veren üç oksijen bölgesine bağlanırlar: 2: 5 oksijen oranı. Önemli örnekler arasında mika, klorit ve kaolinit-serpantin grupları bulunur. Tabakalar, van der Waals kuvvetleri veya hidrojen bağları ile zayıf bir şekilde bağlanır, bu da kristalografik bir zayıflığa neden olur ve bu da fillosilikatlar arasında belirgin bir bazal bölünmeye yol açar.[85] tetrahedra'ya ek olarak, fillosilikatlar, negatif bir yüke sahip olan temel tetrahedrayı dengeleyen bir oktahedra tabakasına (oksijen ile altı kat koordinasyondaki elemanlar) sahiptir (örneğin [Si4O10]4−) Bu tetrahedra (T) ve oktahedra (O) tabakaları, fillosilikat grupları oluşturmak için çeşitli kombinasyonlarda istiflenir. Bir oktahedral levha içinde, bir birim yapısında üç oktahedral siteleri vardır; ancak, tüm siteler işgal edilebilir. Bu durumda, mineral dioctahedral olarak adlandırılır, diğer durumda ise trioctahedral olarak adlandırılır.[86]

    Kaolinit-serpantin grubu, yığınlardan (1:1 kil mineralleri) oluşur; tabakalar hidrojen bağları tarafından tutulduğu için sertlikleri 2 ila 4 arasında değişir. 2: 1 kil mineralleri (pirofilit-talk) T-O-T yığınlarından oluşur, ancak bunlar van der Waals kuvvetleri tarafından bir arada tutulduğu için daha yumuşaktır (1'den 2'ye sertlik). Bu iki mineral grubu oktahedral mesleğe göre alt gruplardır; spesifik olarak, kaolinit ve pirofilit dioctahedral, serpantin ve talk trioctahedral'dır.[87]

    Mica'lar ayrıca T-O-T-yığılmış fillosilikatlardır, ancak diğer T-O-T ve T-O-yığılmış alt sınıf üyelerinden farklıdır, çünkü tetrahedral tabakalara alüminyum dahil ederler (kil mineralleri oktahedral bölgelerde al3+ ' a sahiptir). Mikaların yaygın örnekleri muskovit ve biyotit serisidir. Klorit grubu mika grubu ile ilgilidir, ancak iki yığın arasında brusit benzeri (Mg(OH)2) bir katmandır.[88]

    Kimyasal yapıları nedeniyle, fillosilikatlar tipik olarak elektrik izolatörleri olan ve çok ince pullara bölünebilen esnek, elastik, şeffaf katmanlara sahiptir. Mıcas, elektronikte izolatör olarak, inşaatta, optik dolgu maddesi olarak veya hatta kozmetik olarak kullanılabilir. Bir serpantin türü olan krizotil, endüstriyel asbestte en yaygın mineral türüdür, çünkü sağlık açısından amfibol asbestten daha az tehlikelidir.[89]

    İnosilikatlar, zincirlerle defalarca bağlanmış tetrahedradan oluşur. Bu zincirler tek olabilir, burada bir tetrahedron sürekli bir zincir oluşturmak üzere iki kişiye bağlanır; alternatif olarak, çift zincirli silikatlar oluşturmak için iki zincir birleştirilebilir. Tek zincirli silikatlar 1:3 (örneğin [Si2O6]4 -) bir silikon:oksijen oranına sahipken, çift zincirli çeşitlilik 4:11, örneğin [Si8O22]12-oranına sahiptir. İnosilikatlar iki önemli Kaya oluşturan mineral grubu içerir; tek zincirli silikatlar en yaygın olarak piroksenlerdir, çift zincirli silikatlar ise genellikle amfibollerdir.[90] Yüksek mertebeli zincirler var (örneğin üç üyeli, dört üyeli, beş üyeli zincirler, vb. ama bunlar çok nadirdir.[91]

    Piroksen grubu 21 mineral türünden oluşur.[92] Pyroxenes, XY(Si2O6) genel bir yapı formülüne sahiptir, burada X bir oktahedral bölgedir, Y ise koordinasyon numarasında altı ila sekiz arasında değişebilir. Piroksen çeşitlerinin çoğu, omurgadaki negatif yükü dengelemek için Ca2+, Fe2+ ve Mg2 + permütasyonlarından oluşur. Pyroxenes yerkabuğunda yaygındır (yaklaşık %10) ve mafik magmatik kayaların önemli bir bileşenidir.[93]

    Amfiboller kimyada büyük bir değişkenliğe sahiptir, çeşitli şekillerde "mineralojik çöp tenekesi" veya "elementlerin denizini yüzen mineralojik bir köpekbalığı"olarak tanımlanmaktadır. Amfibollerin omurgası [Si8O22] 12−; üçüncü pozisyon her zaman kullanılmamasına rağmen, üç olası pozisyonda katyonlarla dengelenir ve bir eleman kalan her ikisini de işgal edebilir. Son olarak, amfiboller genellikle hidratlanır, yani bir hidroksil grubuna ([OH]−) sahiptirler, ancak bir florür, bir klorür veya bir oksit iyonu ile değiştirilebilirler.[94] değişken kimya nedeniyle, 80'den fazla amfibol türü vardır, ancak piroksenlerde olduğu gibi varyasyonlar en yaygın olarak Ca2+, Fe2+ ve Mg2 + karışımlarını içerir.[92] birkaç amfibol mineral türü asbest benzeri bir kristal alışkanlığına sahip olabilir. Bu asbest mineralleri, kimyasal olarak inert ve ısıya dayanıklı, elektrik izolatörleri olan uzun, ince, esnek ve güçlü lifler oluşturur; bu nedenle, özellikle inşaat malzemelerinde çeşitli uygulamalara sahiptirler. Bununla birlikte, asbest kanserojen olarak bilinir ve asbest gibi çeşitli hastalıklara neden olur; amfibol asbest (antofilit, tremolit, aktinolit, grunerit ve riebeckite) krizotil serpantin asbestten daha tehlikeli olarak kabul edilir.[95]

    Siklosilikatlar veya halka silikatlar, 1: 3'lük bir silikon oranına sahiptir. Altı üyeli halkalar en yaygın olanıdır, bir baz yapısı ile [Si6O18] 12 -; örnekler turmalin grubu ve beril içerir. Diğer halka yapıları var, ile 3, 4, 8, 9, 12 tarif edilmiştir.[96] Siklosilikatlar, uzun, çizgili kristallerle güçlü olma eğilimindedir.[97]

    Turmalinler, genel bir formül XY3Z6(BO3)3T6O18V3W ile tanımlanabilen çok karmaşık bir kimyaya sahiptir. T6O18, T'nin genellikle Si4+ olduğu, ancak Al3+ veya B3 + ile değiştirilebilen temel halka yapısıdır. Turmalinler, x bölgesinin doluluk oranı ile alt gruplandırılabilir ve oradan W bölgesinin kimyası ile alt bölümlere ayrılabilir. Y ve Z bölgeleri çeşitli katyonları, özellikle de çeşitli geçiş metallerini barındırabilir; yapısal geçiş metal içeriğindeki bu değişkenlik, turmalin grubuna renk bakımından daha fazla değişkenlik kazandırır. Diğer siklosilikatlar, çeşitleri zümrüt (yeşil) ve akuamarin (mavimsi) değerli taşları içeren beril, Al2Be3Si6O18 içerir. Kordierit yapısal olarak berile benzer ve yaygın bir metamorfik mineraldir.[98]

    Sorosilicates, aynı zamanda vadeli disilicates,-oksijen tetrahedron yapıştırma için silikon 2:7 oranı sonucu bir oksijen tetrahedron de var. Elde edilen ortak yapısal eleman [Si2O7]6 grubudur. Şimdiye kadar en yaygın hayal kırıklığı epidot grubunun üyeleridir. Epidot jeolojik ortamlarda çeşitli bulunur, metapelitlere granitler orta okyanus sırt arasında değişen. Bölüm yapısı [(SiO4)(Si2O7)] 10-yapısı etrafında inşa edilmiştir; örneğin, mineral türleri epidot denge şarj etmek için kalsiyum, alüminyum ve ferrik demir vardır: Ca2Al2(Fe3+, Al) (SiO4) (Si2O7) O (OH). Fe3+ ve Fe2 + olarak demirin varlığı, oksijen fugasitesinin anlaşılmasına yardımcı olur ve bu da petrojenezde önemli bir faktördür.[99]

    Sorosilikatların diğer örnekleri arasında, blueschist fasiyeslerinde (düşük sıcaklık ve yüksek basınçla yitim Bölgesi Ayarı) oluşturan bir metamorfik mineral olan lawsonite, kimyasal yapısında önemli miktarda kalsiyum alan vesuvianit bulunur.[99][100]


    Ortosilikatlar, diğer katyonlar tarafından şarj dengelenmiş izole tetrahedradan oluşur.[101] Ayrıca nesosilikatlar olarak da adlandırılan bu silikat türü, 1:4'lük bir silikon: oksijen oranına sahiptir (örneğin SiO4). Tipik ortosilikatlar bloklu equant kristalleri oluşturma eğilimindedir ve oldukça zordur.[102] Çeşitli Kaya oluşturan mineraller, alüminosilikatlar, olivin grubu ve granat grubu gibi bu alt sınıfın bir parçasıdır.

    Alüminosilikatlar-bkyanit, andalusit ve sillimanit, tüm Al2SiO5 – yapısal olarak bir [SiO4]4− tetrahedron ve oktahedral koordinasyonda bir Al3+ ' dan oluşur. Kalan Al3 + altı kat koordinasyon (kiyanit), beş kat (andalusit) veya dört kat (sillimanit) olabilir; belirli bir ortamda hangi mineral formları basınç ve sıcaklık koşullarına bağlıdır. Olivin yapısında, ana olivin serisi (Mg, Fe) 2SiO4, magnezyum bakımından zengin forsterit ve demir bakımından zengin fayalitten oluşur. Hem demir hem de magnezyum oksijenle oktahedraldedir. Bu yapıya sahip diğer mineral türleri, tephroite, Mn2SiO4 gibi mevcuttur.[103] granat grubu, X'in büyük bir sekiz kat koordineli katyon olduğu ve Y'nin daha küçük bir altı kat koordineli katyon olduğu genel bir x3y2(SiO4)3 formülüne sahiptir. İki gruba bölünmüş altı ideal son granat var. Piralspit granatlarının y konumunda Al3 + vardır: pirop (Mg3Al2 (SiO4) 3), almandin (Fe3Al2 (SiO4) 3) ve spessartin(Mn3Al2 (SiO4)3). Ugrandite granatlarının X konumunda Ca2 + vardır: uvarovite (Ca3Cr2 (SiO4) 3), grossular (Ca3Al2 (SiO4) 3) ve andradite(Ca3Fe2 (SiO4)3). İki alt granat grubu olsa da, altı son üye arasında katı çözümler bulunur.[101]

    Diğer ortosilikatlar Zirkon, staurolit ve topaz içerir. Zirkon (ZrSiO4), zr4+ U6 + ile ikame edilebileceğinden jeokronolojide yararlıdır; ayrıca, çok dayanıklı yapısı nedeniyle, bir kronometre olarak sıfırlamak zordur. Staurolit, yaygın bir metamorfik orta dereceli indeks mineralidir. Sadece 1986'da tam olarak tarif edilen özellikle karmaşık bir kristal yapıya sahiptir. Turmalin ile ilişkili granitik pegmatitlerde sıklıkla bulunan Topaz (al2sio4(F, OH) 2, ortak bir taş mineralidir.[104]

    Silikatlar[değiştir | kaynağı değiştir]


    Doğal elementler, diğer elementlere kimyasal olarak bağlanmamış olanlardır. Bu mineral grubu, doğal metalleri, yarı metalleri ve metal olmayanları ve çeşitli alaşımları ve katı çözümleri içerir. Metaller, parlak metalik parlaklık, süneklik ve dövülebilirlik ve elektriksel iletkenlik gibi ayırt edici fiziksel özellikler sağlayan metalik bağ ile bir arada tutulur. Yerli elemanlar, yapıları veya kimyasal özellikleri ile gruplara ayrılır.

    Kübik yakın paketlenmiş bir yapıya sahip olan altın grubu, altın, gümüş ve bakır gibi metalleri içerir. Platin grubu, yapı olarak altın grubuna benzer. Demir-nikel Grubu, birkaç demir-nikel alaşımı türü ile karakterize edilir. İki örnek, demir göktaşlarında bulunan kamasit ve taenittir; bu türler alaşımdaki Ni miktarına göre farklılık gösterir; kamasit %5-7 nikelden daha azdır ve çeşitli doğal demirdir, oysa taenitin nikel içeriği %7-37 arasında değişmektedir. Arsenik grubu mineralleri, sadece bazı metalik özelliklere sahip olan yarı metallerden oluşur; örneğin, metallerin dövülebilirliğinden yoksundurlar. Doğal karbon, iki allotropta, grafit ve elmasta oluşur; ikincisi, mantoda çok yüksek basınçta oluşur ve bu da grafitten çok daha güçlü bir yapı sağlar.[105]

    Sülfür mineralleri, bir veya daha fazla metalin veya bir kükürtlü semimetallerin kimyasal bileşikleridir; tellür, arsenik veya selenyum kükürtün yerini alabilir. Sülfitler, yüksek özgül ağırlığa sahip yumuşak, kırılgan mineraller olma eğilimindedir. Pirit gibi birçok toz sülfür, toz haline getirildiğinde sülfürlü bir kokuya sahiptir. Sülfitler hava koşullarına duyarlıdır ve birçoğu suda kolayca çözülür; bu çözünmüş mineraller daha sonra zenginleştirilmiş ikincil cevher yatakları oluşturan yeniden biriktirilebilir.[106] Sülfitler, metal veya semimetalin kükürt oranına göre sınıflandırılır, örneğin M:S 2:1 veya 1: 1'e eşittir.[107] birçok sülfit minerali metal cevherleri olarak ekonomik olarak önemlidir; örnekler arasında sfalerit (ZnS), bir çinko cevheri, galena (PbS), bir kurşun cevheri, cinnabar (HgS), bir cıva cevheri ve molibdenit (MoS2, bir molibden cevheri bulunur.[108] Pirit (FeS2), en sık görülen sülfittir ve çoğu jeolojik ortamda bulunabilir. Bununla birlikte, bir demir cevheri değildir, ancak bunun yerine sülfürik asit üretmek için oksitlenebilir.[109] sülfitler ile ilgili olarak, metalik bir elementin kükürt ve antimon, arsenik veya bizmut gibi bir semimetale bağlandığı nadir sülfosaltlardır. Sülfitler gibi, sülfosaltlar tipik olarak yumuşak, ağır ve kırılgan minerallerdir.[110]

    Oksit mineralleri üç kategoriye ayrılır: basit oksitler, hidroksitler ve çoklu oksitler. Basit oksitler, ana anyon ve esas olarak iyonik bağ olarak O2− ile karakterize edilir. Oksijenin katyonlara oranı ile daha da alt bölümlere ayrılabilirler. Periklaz grubu 1:1 oranına sahip minerallerden oluşur. 2:1 oranına sahip oksitler arasında cuprite (Cu2O) ve su buzu bulunur. Korundum grubu mineralleri 2: 3 oranına sahiptir ve korundum (Al2O3), ve Hematit (Fe2O3)gibi mineralleri içerir. Rutil grubu mineralleri 1:2 oranına sahiptir; eponymous türler, rutil (TiO2) titanyumun baş cevheridir; diğer örnekler arasında cassiterit (sno2; kalay cevheri) ve pirolüzit (MnO2; manganez cevheri) bulunur.[111][112] Hidroksitlerde, baskın anyon hidroksil iyonudur, OH−. Boksitler baş alüminyum cevheridir ve hidroksit mineralleri diaspore, gibbsite ve bohmitin heterojen bir karışımıdır; çok yüksek oranda kimyasal ayrışma (özellikle tropikal koşullar) olan bölgelerde oluşurlar.[113] Son olarak, çoklu oksitler oksijenli iki metalin bileşikleridir. Bu sınıftaki büyük bir grup, X2+Y3+2O4 genel formülü ile spinellerdir. Türlerin örnekleri spinel (MgAl2O4) , kromit (FeCr2O4), ve manyetit (Fe3O4) içerir. İkincisi, iki oksidasyon durumunda (Fe2+Fe3+2O4), demire sahip olduğu için ortaya çıkan güçlü manyetizması ile kolayca ayırt edilebilir, bu da onu tek bir oksit yerine çoklu bir oksit yapar.[114]


    Halojenür mineralleri, bir halojenin (flor, klor, iyot veya brom) ana anyon olduğu bileşiklerdir. Bu mineraller yumuşak, zayıf, kırılgan ve suda çözünür olma eğilimindedir. Halojenürlerin yaygın örnekleri arasında Halit (NaCl, sofra tuzu), sylvite (KCl), florit (CaF2)bulunur. Halit ve sylvite yaygın olarak evaporitler oluşturur ve kimyasal tortul kayaçlarda baskın mineraller olabilir. Cryolite, Na3AlF6, boksitlerden alüminyumun çıkarılmasında önemli bir mineraldir; Bununla birlikte, Ivittuut'taki tek önemli olay olan Grönland, granitik bir pegmatitte tükendi, sentetik kriyolit floritten yapılabilir.[115]

    Karbonat mineralleri, ana anyonik grubun karbonat, [CO3]2− olduğu minerallerdir. Karbonatlar kırılgan olma eğilimindedir, birçoğu rhombohedral bölünmeye sahiptir ve hepsi asitle reaksiyona girer.[116] Son özellik nedeniyle, saha jeologları genellikle karbonatları karbonatlardan ayırmak için seyreltik hidroklorik asit taşırlar. Asidin en yaygın olarak polimorf kalsit ve aragonit (CaCO3 )olarak bulunan karbonatlarla reaksiyonu, kireçtaşı mağaralarının oluşumunda bir anahtar olan mineralin çözünmesi ve çökelmesi ile ilgilidir, bunlar içinde sarkıt ve dikitler ve karst yer şekilleri gibi özellikler. Karbonatlar çoğunlukla deniz ortamlarında biyojenik veya kimyasal çökeller olarak oluşur. Karbonat grubu yapısal olarak merkezi bir C4+ katyonunun üç O2− anyon ile çevrelendiği bir üçgendir; bu üçgenlerin farklı düzenlemelerinden farklı mineral grupları oluşur.[117] En yaygın karbonat minerali, tortul kireçtaşı ve metamorfik mermerin birincil bileşeni olan kalsittir. Kalsit, CaCO3, yüksek magnezyum safsızlığına sahip olabilir. Yüksek Mg koşullar altında, polimorf aragonit bunun yerine oluşacaktır; bu bağlamda deniz jeokimyası, hangi mineralin tercihli olarak oluştuğuna bağlı olarak bir aragonit veya kalsit Denizi olarak tanımlanabilir. Dolomit, CaMg(CO3)2.formülü ile bir çift karbonattır. Kireçtaşının ikincil dolomitizasyonu yaygındır, burada kalsit veya aragonit dolomite dönüştürülür; bu reaksiyon gözenek alanını arttırır (dolomitin birim hücre hacmi kalsitin %88'idir), bu da petrol ve gaz için bir rezervuar oluşturabilir. Bu iki mineral türü, isimsiz mineral gruplarının üyeleridir: kalsit Grubu, Genel formül XCO3ile karbonatları içerir ve dolomit Grubu, Genel formül XY(CO3)2. ile mineralleri oluşturur.[118]

    Sülfat minerallerinin tümü sülfat anyonunu içerir, [SO4]2−.. Yarı saydam, yumuşak ve birçoğu kırılgandır.[119] Sülfat mineralleri genellikle buharlaşan tuzlu sulardan çökeldikleri evaporitler olarak oluştururlar. Sülfatlar ayrıca sülfitlerle ilişkili hidrotermal ven sistemlerinde,[120] veya sülfitlerin oksidasyon ürünleri olarak da bulunabilir.[121] Sülfatlar susuz ve sulu minerallere bölünebilir. En yaygın hidro sülfat, alçı, CaSO4⋅2H2O. bir evaporit olarak oluşur ve kalsit ve Halit gibi diğer evaporitlerle ilişkilidir; kristalleştikçe kum taneleri içeriyorsa, alçı çöl gülleri oluşturabilir. Alçı çok düşük ısı iletkenliğine sahiptir ve dehidrasyon ile bu ısıyı kaybettiği için ısıtıldığında düşük bir sıcaklığı korur; Bu nedenle, alçı sıva ve alçıpan gibi malzemelerde bir yalıtkan olarak kullanılır. Jipsin susuz eşdeğeri anhidrittir; çok kurak koşullarda doğrudan deniz suyundan oluşabilir. Barit grubu, X'in büyük bir 12 koordineli katyon olduğu genel formül XSO4 'e sahiptir. Örnekler barit (BaSO4), celestine (SrSO4),ve anglesite (PbSO4) içerir); anhidrit, daha küçük Ca2+ sadece sekiz kat koordinasyonda olduğu için barit grubunun bir parçası değildir.[122]

    Fosfat mineralleri tetrahedral [PO4]3− birimi ile karakterize edilir, ancak yapı genelleştirilebilir ve fosfor antimon, arsenik veya vanadyum ile değiştirilir. En yaygın fosfat apatit grubudur; bu gruptaki ortak türler fluorapatit (Ca5(PO4)3F), klorapatit(Ca5(PO4)3Cl) ve hidroksilapatit (Ca5(PO4)3(OH)) dir. Bu gruptaki mineraller omurgalılardaki dişlerin ve kemiklerin ana kristal bileşenleridir. Nispeten bol miktarda monazit grubu, T'nin fosfor veya arsenik olduğu A ila 4 genel bir yapıya sahiptir ve A genellikle nadir toprak elementidir (REE). Monazite iki yönden önemlidir: birincisi, REE "bir lavabo" olarak, yeterince bu unsurlar bir cevher olmaya konsantre olabilir; ikincisi, monazite grup elemanları monazite 1998 yılında U ve Th kurşun çürüme dayalı rock tarihi için kullanılabilecek uranyum ve toryum nispeten büyük miktarda dahil edebilirsiniz.[123]

    Strunz Sınıflandırması organik mineraller için bir sınıf içerir. Bu nadir bileşikler organik karbon içerir, ancak jeolojik bir işlemle oluşturulabilir. Örneğin, whewellite, CaC2O4⋅H2O hidrotermal cevher damarlarında birikebilen bir oksalattır. Hidratlı kalsiyum oksalat, kömür dikişlerinde ve organik madde içeren diğer tortul birikintilerde bulunabilirken, hidrotermal oluşumun biyolojik aktivite ile ilişkili olduğu düşünülmemektedir.[74]

    Astrobiyoloji[değiştir | kaynağı değiştir]

    Biyominerallerin dünya dışı yaşamın önemli göstergeleri olabileceği ve bu nedenle Mars gezegeninde geçmiş veya şimdiki yaşam arayışında önemli bir rol oynayabileceği öne sürülmüştür. Ayrıca, genellikle biominerals ile ilişkili organik bileşenlerin (biyoignatürlerin) hem ön biyotik hem de biyotik reaksiyonlarda önemli roller oynadığına inanılmaktadır.[124]

    Mars'ta Merak ve opportunity rovers tarafından mevcut çalışmalar artık eski hayatın kanıt arıyoruz, bu antik nehir veya göl ile ilgili (plains) göl ortamları yaşanabilir olmuştur ototrof, chemotrophic ve/veya chemolithoautotrophic mikroorganizmaların yanı sıra antik su, fluvio dahil olmak üzere temel bir biyosfer dahil olacağı 24 Ocak 2014 tarihinde, NASA bildirdi.[125][126][127][128] Mars gezegenindeki yaşanabilirlik, taphonomy (fosillerle ilgili) ve organik karbon kanıtı arayışı şimdi birincil bir NASA hedefidir.[125][126]


    Diğer bağlantılar[değiştir | kaynağı değiştir]

    Wikimedia Commons'ta Mineral ile ilgili çoklu ortam belgeleri bulunur.

    Kaynakça[değiştir | kaynağı değiştir]

    Yazı kaynağı : tr.wikipedia.org

    Kayaçlar nasıl oluşur? Kısaca kayaçların oluşumu

    Kayaçlar nasıl oluşur? Kısaca kayaçların oluşumu

    Kızgın gaz kütlesi halindeki dünyanın dış yüzey kısmının, soğuması ve bu soğumayla katılaşma süreci kayaçların oluşmasına olanak vermektedir. Aynı zamanda pek çok çevresel etmenler de sürece dahil olarak kayaçların zaman içerisinde meydana gelmesine katkı sağlamaktadır.

    Kayaçlar Nasıl Oluşur?
    Yer kabuğunun oluşması esnasında magma yüzeye çıkar ve katılaşır. Bununla beraber ortaya çıkan yeryüzü şekilleri eşliğinde bunların altında kalmış olan katmanlar kayaçları oluşturur. Tabii bu süreç içerisinde çevre şartları da yer almaktadır. Yağmur, rüzgar, akarsu aşındırması, sel ile yüksek sıcaklık ve basınç gibi faktörlerin etkisi üzerinden kayaçların oluşumu sağlanır. Tam olarak tanımlamak gerekirse kayaç; yapısında birçok değişik mineral madde bulunduran yer kabuğundaki en büyük kaya parçaları bütünüdür. Aynı sıcak ve soğuk değişimleri ile beraber çevresel faktörlerin sürece dahil edilmesiyle, yer kabuğu kayaçların oluşumuna etki sağlamaktadır. Yüksek sıcaklık ile beraber ayrıca basınç üzerinden yaşanan soğuma kayaçları oluşturur. Özellikle mineral kaynakları üzerinden günümüzde önemli bir yere sahiptir. Bu sebepten pek çok farklı sektör için üretim konusunda ciddi bir yeri vardır. Gündelik yaşamın içerisinde kullanılan birbirinden farklı ürünler kayaçların ham madde olarak kullanılması ile elde edilir.

    Kısaca Kayaçların Oluşumu
    Kayaçlar kısaca yüksek basınç, sıcaklık ve soğukluk ile beraber çevresel faktörlerin sürece girmesiyle oluşan kaya parçalarıdır. Aynı zamanda içerisinde birbirinden farklı mineraller bulunduran önemli kayalar arasında yer alır. Kayaç oluşumlarını 3 farklı grup altında incelemek mümkün.

    - Volkanik kayaçlar, (Granit, volkan camı, katran taşı ve sünger taşı)
    - Tortul kayaçlar, (Kumlar, çakıllar, travertenler, kireç taşı, kaya tuzu, taş kömürü, linyit ve asfalt ile tebeşir)
    - Başkalaşım kayaçları, (Mermer, elmas ve kuvarsit)

    Farklı gruplar üzerinde pek çok değişik kullanılan etmen adına ham madde şeklinde değerlendirilen önemli bir kayaç türüdür. Zengin mineral yapısı ile günümüzde sürekli olarak üretimden geçen kaya türleri arasında yer almaktadır.

    Yazı kaynağı : www.milliyet.com.tr

    Yorumların yanıtı sitenin aşağı kısmında

    Ali : bilmiyorum, keşke arkadaşlar yorumlarda yanıt versinler.

    Yazının devamını okumak istermisiniz?
    Yorum yap