Bu sitede bulunan yazılar memnuniyetsizliğiniz halınde olursa bizimle iletişime geçiniz ve o yazıyı biz siliriz. saygılarımızla

    kütle çekimi nedir dünyada ve diğer gezegenlerde kütle çekimi nasıl değişir

    1 ziyaretçi

    kütle çekimi nedir dünyada ve diğer gezegenlerde kütle çekimi nasıl değişiri bilgi90'dan bulabilirsiniz

    Kütle çekimi nedir? Dünya'da ve diğer gezegenlerde kütle çekimi nasıl değişir?

    Kütle çekimi nedir, dünyada ve diğer gezegenlerde kütle çekimi nasıl değişir?

    Kütle çekimi nedir, dünyada ve diğer gezegenlerde kütle çekimi nasıl değişir?

    Cevap:Dünya’nın ve diğer gök cisimlerinin birbirlerine ve üzerinde bulunan cisimlere uyguladığı çekim kuvvetine kütle çekimi denir. Kütlesi büyük olan gök cisimleri varlıklara daha fazla çekim kuvveti uygularken kütleleri küçük olanlar daha az çekim kuvveti uygular. Buna göre kütle çekimi gezegenlerde büyükten küçüğe doğru Jüpiter, Neptün, Dünya, Satürn, Venüs, Uranüs, Mars ve Merkür şeklinde sıralanır.

    Açıklama:

    Yazı kaynağı : eodev.com

    Kütle çekimi nedir? Dünya’da ve diğer gezegenlerde kütle çekimi nasıl değişir?

    Kütle çekimi nedir? Dünya’da ve diğer gezegenlerde kütle çekimi nasıl değişir?

    Cevap:

    Merhaba,

    Kütle çekimi evrende bulunan gök cisimlerinin kendi üzerilerinde bulunan cisimlere ve çevrelerinde bulunan diğer gök cisimlerine uygulamakta olduğu çekim kuvvetidir.

    Örnekte verdiğimiz bu farklılığın nedeni ise dünyamızın çekirdeğin, yani merkeze kutupların daha yakın olmasıdır.  

    Aynı şekilde merkezden uzaklaştıkça nesnelerin ağırlığı azalmaya devam eder. Çünkü merkezden uzaklaşma olmaktadır. Dağa tırmanan kişilerin ağırlığı azalmaya başlar.

    2019-2020 7. Sınıf Fen Bilimleri Ders Kitabı Cevapları Tutku Yayınları Sayfa 98:

    eodev.com/gorev/16105392

    2019-2020 7. Sınıf Fen Bilimleri Ders Kitabı Cevapları Tutku Yayınları:

    eodev.com/gorev/16651528

    Başarılar dilerim!

    Cevabımız “Camdakikedi” kullanıcısına aittir.

    #teamlink

    Yazı kaynağı : eodev.com

    Kütle çekimi nedir, Dünya’da ve diğer gezegenlerde kütle çekimi nasıl değişir

    Kütleçekim

    Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru (ya da birbirine doğru çekildiği) hareket ettiği doğal bir fenomendirEnerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

    Dünya'da, kütleçekim, fiziksel nesnelere ağırlık verir ve okyanus gelgitlerine neden olur. Evrendeki gaz halindeki maddenin çekimi, gaz halindeki maddeyi bir araya getirerek yıldızlar oluşturmaya ve yıldızların galaksilere birleştirilmesine, dolayısıyla kütleçekimin Evrendeki büyük ölçekli yapıların çoğundan sorumlu olmasına neden olmuştur.

    Kütleçekim, sonsuz bir aralıkta bulunurken, uzaktaki nesneler üzerindeki etkileri gittikçe daha zayıf hale gelmektedir. Kütleçekim, kütleçekimi bir kuvvet olarak değil, kütlenin / enerjinin düzensiz dağılımının yol açtığı uzay-zaman eğriliğinin bir sonucu olarak tanımlayan genel görelilik teorisi (1915'te Albert Einstein tarafından önerildi) tarafından açıklanmaktadır.

    Uzay zamanının bu eğriliğinin en uç örneği, hiçbir şeyin, ışığın bile[1], ufkuna girdikten sonra kara delikten kaçamamasıdır. Daha fazla kütleçekim çekim kuvveti zaman dilatasyonuyla sonuçlanır, burada zaman daha yavaş (daha güçlü) bir kütleçekim potansiyeline daha yavaş geçer. Bununla birlikte, çoğu uygulama için, kütleçekim, kütleçekimin neden olduğu varsayılan Newton'un evrensel çekim yasasıyla anlatılır.

    İki cisim kütlesinin çekim kuvvetinin kütlelerinin çarpımı ile doğru orantılı olduğu ve aralarındaki mesafenin karesi ile ters orantılı olduğu matematiksel bir ilişkiye göre birbirlerine doğrudan çekilen bir kuvvet. Kütleçekim, doğanın dört temel etkileşiminin en zayıf yönüdür. Kütleçekim kuvveti,  güçlü kuvvetten yaklaşık 1038, elektromanyetik kuvvetten 1036 ve zayıf kuvvetten 1029 kat daha zayıftır.

    Sonuç olarak, kütleçekim, atom altı parçacıkların davranışı üzerinde önemsiz bir etkiye sahiptir ve günlük maddenin iç özelliklerini belirleme konusunda rol oynamaz (ancak kuantum çekim kuvvetine bakınız). Öte yandan, kütleçekim, makroskopik ölçekte egemen etkileşimdir ve astronomik cisimlerin oluşum şekli ve yörüngesinin (yörünge) sebebidir.

    Kütleçekim dünya ve evren boyunca gözlemlenen çeşitli olaylardan sorumludur. Örneğin, Dünya ve diğer gezegenlerin Güneş'in yörüngesinde, Ay'ın Dünyanın Yörüngesinde olmasına gelgitlerin oluşumuna, Güneş Sistemi'nin oluşumuna ve evrimine, yıldızlara ve galaksilere neden olur. Planck döneminde (Evrenin doğumundan 10-43 saniye sonrasına kadar) geliştirilen, muhtemelen kuantum kütleçekim, süper gravite veya kütleçekim tekilliği biçimindeki evrende kütleçekimin en eski örneği, muhtemelen bir sahte vakum, kuantum vakumu veya sanal parçacık gibi ilkel bir durumdan bilinmeyen bir biçimde meydana gelmiştir.[2] Bu nedenle, kısmen her şeyin teorisinin araştırılması, genel görelilik teorisinin ve kuantum mekaniğinin (veya kuantum alan teorisinin) kuantum kütleçekime birleştirilmesi bir araştırma alanı haline gelmiştir.

    Kütleçekim teorisinin tarihçesi[değiştir | kaynağı değiştir]

    Kütleçekimin Önceki Kavramları[değiştir | kaynağı değiştir]

    Modern Avrupalı ​​düşünürler haklı olarak kütleçekim teorisinin geliştirilmesi ile bağlantı kuruyorsa da, kütleçekim kuvvetini belirleyen önceden var olan fikirler vardı. İlk açıklamalardan bazıları, Dünya döndüğünde nesnelerin neden düşmediğini açıklamak için kütleçekim kuvvetini belirleyen Aryabhata gibi erken matematikçi astronomlardan geldi.[3]

    Daha sonra, Brahmagupta'nın eserleri bu kuvvetin varlığına değinmişti.

    Bilimsel Devrim[değiştir | kaynağı değiştir]

    Kütleçekim kuramıyla ilgili modern çalışmalar, Galileo Galilei'nin 16. yüzyılın sonu ve 17. yüzyıl başlarındaki çalışmaları ile başladı. Galileo, Pisa Kulesi'nden topları atan meşhur (muhtemelen apokrif[4] deneyinde) eğilimleri düşen eğik top ölçümleri ile, kütleçekim ivmesinin tüm nesneler için aynı olduğunu gösterdi.

    Bu, Aristo'nun daha ağır nesnelerin daha yüksek bir kütleçekim ivmesi olduğuna olan inancından ciddi bir sapmaydı. Galileo, bir atmosferde daha az kütleye sahip nesnelerin daha yavaş düşebileceği için hava direnci olduğunu öne sürdü. Galileo'nun çalışmaları Newton'un kütleçekim kuramının[5] formülasyonu için gerekli altyapıyı hazırladı.[6]

    Newton'un kütleçekim teorisi[değiştir | kaynağı değiştir]

    Sir Isaac Newton, 1642'den 1727'ye kadar yaşayan İngiliz fizikçi. 1687'de İngiliz matematikçisi Sir Isaac Newton Principia'yı yayınladı ve evrensel çekim kuvvetinin ters kare yasasını hipotez haline getirdi. Kendi sözleriyle, "Gezegenleri küreler içinde tutan güçlerin karşılıklı olarak etraflarındaki merkezlerden uzaklıklarının kareleri olması gerektiği ve dolayısıyla ayı Orb'da tutmak için gereken kuvveti karşılaştırdıklarını dile getirdim Yeryüzündeki kütleçekim kuvveti ile neredeyse tümüyle cevabını buldular. "

    Denklem şudur:

    F = G m 1 m 2 r 2 {\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}\ }

    F kuvveti olduğunda, m1 ve m², etkileşen nesnelerin kütleleridir; r, kütle merkezleri arasındaki uzaklıktır; G, kütleçekim sabitidir.

    Newton'un teorisi, diğer gezegenlerin eylemleri tarafından hesaplanamayan Uranüs hareketlerine dayalı Neptün varlığını öngörmek için kullanıldığında en büyük başarısını elde etti. Hem John Couch Adams hem de Urbain Le Verrier tarafından yapılan hesaplar gezegenin genel konumunu ve Le Verrier'in hesaplamaları Johann Gottfried Galle'in Neptün'ü keşfetmesine neden olan hesaplamalardı. Merkür yörüngesindeki bir tutarsızlık, Newton'un teorisindeki kusurları belirtti.

    19. yüzyılın sonlarına doğru, yörüngesinin Newton'un teorisine göre açıklanamayan hafif dalgalanmalar gösterdiği biliniyordu, ancak başka rahatsız edici bir cisim (Güneş'i Merkür'den bile daha yakın bir gezegen gibi) aramıştı. Konu, Albert Einstein'ın yeni genel görelilik teorisi tarafından Merkür'ün yörüngedeki küçük tutarsızlıktan sorumlu olan 1915'te çözüldü.

    Newton'un teorisi Einstein'ın genel göreliliğiyle değiştirilirken, modern, göreceli olmayan kütleçekim hesaplamaları, Newton'un teorisini kullanarak yapılmaya devam etmektedir çünkü daha basit bir şekilde çalışılmaktadır ve yeterince küçük kütleler, hızlar ve enerjiler içeren çoğu uygulama için yeterince doğru sonuçlar verir.

    Eşdeğerlik (Denklik) ilkesi[değiştir | kaynağı değiştir]

    Galileo, Loránd Eötvös ve Einstein gibi bir dizi araştırmacı tarafından araştırılan eşdeğerlik ilkesi, tüm nesnelerin aynı şekilde düştüğü ve kütleçekimnin etkilerinin ivme ve yavaşlamanın bazı yönlerinden ayırt edilemez olduğunu ortaya koymaktadır. Zayıf eşdeğerlik prensibini test etmenin en basit yolu, farklı kütlelerin veya kompozisyonların iki nesnesini vakumda bırakıp aynı anda zemine çarpıp vurmadıklarını görmektir.

    Bu tür deneyler, diğer kuvvetlerin (hava direnci ve elektromanyetik etkiler gibi) önemsiz olduğu durumlarda tüm nesnelerin aynı hızda düştüğünü göstermektedir. Daha sofistike testler Eötvös tarafından icat edilen bir torsiyon dengesini kullanıyor. Uzayda daha doğru deneyler için uydu deneyleri, örneğin STEP, planlanmaktadır.[7]

    Eşdeğerlik ilkesinin formülleri şunları içerir:

    Genel Görelilik[değiştir | kaynağı değiştir]

    Genel görelilikte, kütleçekimin etkileri, bir kuvvet yerine uzay-zaman eğriliğine atfedilir.

    Genel görelilik için başlangıç ​​noktası, serbest düşüşe atalet hareketi eşlik eden eşdeğerlik ilkesidir ve serbest düşen atalet nesneleri yerdeki atıl olmayan gözlemcilere göre hızlandırılmış olarak tanımlar. Bununla birlikte, Newton fiziğinde, nesnelerden en az birisi bir kuvvet tarafından işletilmedikçe böyle bir ivme oluşabilir.

    Einstein, uzay zamanının madde tarafından kıvrıldığını ve serbest düşen cisimlerin kavisli uzayda yerel düz yol boyunca ilerlediğini önermişti. Bu düz yollara jeodezik denir. Newton'un hareket ilk yasası gibi, Einstein'ın teorisi, bir cisim üzerine bir kuvvet uygulanıyorsa, bir jeodezikten sapacaktır. Mesela, Dünya'nın mekanik direnci üzerimizde yukarı doğru bir kuvvet uyguladığından ayakta dururken jeodezik çalışmaları izlemiyoruz; bunun sonucu olarak yeryüzünde eylemsiz durumdayız. Bu, uzayda jeodeziklerin birlikte hareket etmenin neden atalet olarak kabul edildiğini açıklar.

    Einstein alan denklemlerinin başlıca çözümleri şunlardır:

    Genel göreliliğin testleri şunlardır:[9]

    Kütleçekim ve kuantum mekaniği[değiştir | kaynağı değiştir]

    Genel göreliliğin keşfini takip eden on yıllarda, genel göreliliğin kuantum mekaniği ile uyumsuz olduğu görülmüştür. Diğer temel kuvvetlerde olduğu gibi kütleçekimi de kuantum alan teorisi çerçevesinde açıklamak mümkündür. Burada, kütleçekimin çekimsel kuvvetinin, tıpkı sanal fotonların değiş tokuş edilmesi yolu ile elektromanyetik kuvvetlerin açığa çıkması gibi, sanal gravitonların alışverişi sırasında ortaya çıktığı düşünülür. Bu açıklama, genel göreliliği klasik limitte ortaya çıkarır. Ancak, bu yaklaşım, Planck uzunluğu ölçeğindeki kısa mesafelerde başarısızdır. Bu ölçeğe inildiğinde, kuantum çekiminin daha eksiksiz bir teorisine (veya kuantum mekaniğine daha yeni bir yaklaşıma) ihtiyaç bulunmaktadır.

    Detaylar[değiştir | kaynağı değiştir]

    Yerçekimi[değiştir | kaynağı değiştir]

    Dünya gezegeninin kütleçekimi, yerçekimi olarak adlandırılır. Bütün gezegensi cisimler kendi kütleçekimsel alanları ile çevrelenmişlerdir. Bu alanlar, Newton fiziği kullanılarak bakıldığında, bütün cisimler üzerinde çekim gücü uyguluyor olarak tarif edilebilirler. Küresel olarak simetrik bir gezegen varsaydığımızda, bu alanın, gezegensi cismin yüzeyinin üzerindeki herhangi bir noktadaki gücü, cismin kütlesi ile doğru orantılı, cismin merkezine olan uzaklığın karesi ile ters orantılıdır.

    Yerçekimsel alanın kuvveti, etkisi altındaki cisimlerin ivmelenmesine sayısal olarak eşittir. Dünya’nın yüzeyi yakınındaki düşen cisimlerin ivmelenme oranları yüksekliğe, dağlar ve tepeler ve belki sıra dışı oranda yüksek veya düşük yüzey altı yoğunluğuna bağlı olarak çok düşük miktarlarda değişkenlik gösterir. Ağırlıklar ve uzunluklar ile ilgili olarak Uluslararası Ağırlıklar ve Uzunluklar Bürosu tarafından standart bir kütleçekim değeri tanımlanmıştır. Bu değer Uluslararası Birimler Sistemi altında belirtilmektedir.

    Standart kütleçekim g ile gösterilir ve değeri g = 9.80665 m/s2 (32.1740 ft/s2) ‘dir.

    Bu 9.80665 m/s2’lik değer, Uluslararası Ağırlıklar ve Uzunluklar Komitesi tarafından ilk seferinde benimsenmiş olan değerdir. 1901 yılında yapılan ölçüme dayanan bu bilgi, her ne kadar 10 binde beş oranında fazla yüksek olduğu gösterilmiş olsa da, hâlen standart değer olarak kullanılmaya devam etmektedir.[13] Bu değer meteorolojide kullanılmaya devam edilmiştir ve bazı standart atmosferlerde,  her ne kadar asıl değer 45 derece 32 dakika 33 saniye olsa da, 45 derecelik enlemdeki değer olarak kabul edilmektedir.

    Bu, G için standart değeri baz alırsak ve hava direnci ihmal edersek, Dünya’nın yüzeyinde serbest bir biçimde düşen bir nesnenin, düştüğü her saniye için 9.80665 m/s (32.1740 ft/saniye) hızlanacağı anlamına gelmektedir. Böylece, durağan konumdan harekete geçen bir cisim, bir saniye sonunda 9.80665 m/s (32.1740 ft/saniye) hıza ulaşacaktır. Bu hız, ikinci saniye sonunda yaklaşık 19.62 metre/saniye (64.4 ft/s) olacak ve bu şekilde, sonrasında geçen her saniye içim hıza 9.80665 m/s (32.1740 ft/saniye) eklenecektir. Ayrıca, yine hava sürtünmesini ihmal ettiğimizde, aynı yükseklikten bırakıldığı takdirde herhangi ve bütün cisimler yere aynı anda çarpacaklardır.

    Newton’un üçüncü kanununa göre, düşen bir cisme uyguladığı kuvvetin aynısını kendisi de aynı büyüklükte fakat tam tersi yönde hissetmektedir. Bu, iki cisim birbirleri ile çarpışıncaya kadar, Dünya’nın da cisme doğru ivmelendiği anlamına gelmektedir. Dünya’nın kütlesi devasa olduğundan, bu tersine yönlü kuvvet ile Dünya üzerinde oluşan ivmelenme, nesnenin yaşadığı ivmelenmenin yanında çok küçüktür. Eğer nesne Dünya ile çarpıştıktan sonra sekmezse, bu sefer her biri diğerine itici bir temas kuvveti uygulayacak ve bu kuvvet çekim kuvvetini dengeleyerek daha fazla herhangi bir hareket olmasını engelleyecektir.

    Dünya üzerindeki kütleçekim kuvveti iki kuvvetten kaynaklanır (bu iki kuvvetin vektörel toplamıdır): a) Newton’un evrensel yasaları uyarınca uygulanan kütleçekimsel çekim b) merkezkaç kuvveti; bu kuvvet, dünyaya bağlı dönen bir referans noktası almamızdan kaynaklanmaktadır. Yerçekimi kuvveti, ekvatorda en düşük düzeydedir. Bunun iki nedeni vardır: Birincisi, ekvatorun üzerindeki noktalar, Dünya’nın merkezine en uzak noktalardır. İkincisi ise, merkezkaç kuvvetinin en güçlü biçimde hissedildiği yerin Ekvator olmasıdır. Yerçekimi kuvveti enlemin artması ile birlikte ekvator çizgisi üzerindeki 9.780 m/s2’lik değerinden kutuplar üzerindeki 9.832 m/s2’lik değere doğru artar.

    Dünya’nın Yüzeyi Yakınında Serbest Düşen Bir Cisme Ait Denklemler[değiştir | kaynağı değiştir]

    Sabit bir kütleçekimsel çekim kuvveti varsayımı altında, Newton’un evrensel çekim kuvveti kanunu, F=mg formülüne indirgenir. Burada m, cismin kütlesi, g ise Dünya üzerindeki ortalama büyüklük değeri 9.81m/s2 olan sabit bir vektördür. Ortaya çıkan kuvvete cismin ağırlığı denir. Kütleçekimden kaynaklanan ivmelenmeye bu g değerine eşittir. Başlangıçta durağan olan bir cisim, serbest bırakıldığı takdirde, serbest düşüş sırasında geçirdiği zamanın karesi ile orantılı bir biçimde yol alır. Sağda görülen resimde, yarım saniyelik süre zarfında stroboskopik flaş kullanılarak saniyede 20 flaş hızı ile çekilmiştir. Saniyenin ilk 20’de 1’lik kısmında, düşen top bir birim mesafe katetmektedir (burada, bir birim mesafe yaklaşık 12 milimetredir). İkinci 20’de 1’lik süre sonunda, cisim toplamda 4 birim düşmüş olmakta ve bu hızlanma üçüncü 20’de 1’lik saniyede 9 birim şeklinde devam etmektedir.

    Aynı sabit kütleçekim varsayımları altında, h yüksekliğinde duran bir cismin potansiyel enerjisi Ep= mgh (veya Ep=wh, w=ağırlık) ‘tır. Bu gösterim, Dünya’nın yüzeyine olan mesafe olan h’ın yalnızca çok kısa olduğu mesafeler için geçerlidir. Benzer şekilde, ilk hız v ile fırlatılan bir cismin ulaşabileceği en büyük yüksekliğin gösterimi de h = v 2 2 g {\displaystyle h={\tfrac {v^{2}}{2g}}} küçük yükseklikler ve küçük başlangıç hızları için geçerlidir.

    Kütleçekimsel Astronomi[değiştir | kaynağı değiştir]

    Yerçekimi içerisinde bulunduğumuz Samanyolu Galaksisini oluşturan yıldızlara etki eder

    Newton’un kütleçekim kanunlarının uygulanması, Güneş Sistemi’ndeki gezegenler, Güneş’in kütlesi, kuvasarların detayları ve hatta karanlık maddenin varlığı hakkında bile bugün sahip olduğumuz detaylı bilginin çoğunun kaynağını oluşturmaktadır. Her ne kadar ne bütün gezegenlere ne de Güneş’e yolculuk etmemiş olsak da, bunların kütlelerini biliyoruz. Bu kütleler, kütleçekim kanunlarının yörüngenin ölçülen karakteristiklerine uygulanması yolu ile elde edilmektedirler. Uzayda bir cisim, ona etki eden kütleçekim nedeniyle yörüngesini muhafaza eder. Gezegenler, yıldızların yörüngesinde dolanır, yıldızlar ise galaktik merkezlerin çevresinde dolanırlar. Galaksiler, yığınların ortasındaki ağırlık merkezinin çevresinde dolanırlar ve yığınlar da süper yığınların yörüngesindedirler. Bir cisim üzerine diğer bir cisim tarafından etki eden kütleçekim kuvveti, bu cisimlerin kütlelerinin çarpımı ile doğru orantılı ve aralarındaki mesafenin karesi ile ters orantılıdır.

    Muhtemelen kuantum çekimi, süper çekim veya kütleçekimsel tekillik şeklindeki en erken kütleçekim, uzay ve zaman ile birlikte, Evren’in başlangıcını takip eden 10-43 saniyelik bir süre olan Planck evresinde ortaya çıkmıştır. Daha öncesinde ise Evren’in sahte vakum, kuantum vakumu veya sanal parçacık gibi daha ilkel bir düzeyde olduğu düşünülmekte fakat Planck evresine nasıl geçiş yaptığı bilinmemektedir.[2]

    Kütleçekimsel Radyasyon[değiştir | kaynağı değiştir]

    Genel göreliliğe göre, kütleçekim radyasyonu, uza-zamanın osilasyonu gösterdiği yerlerde ortaya çıkar. Bu, birbirinin çevresinde yörüngeye girmiş cisimlerde görülür. Güneş sistemi tarafında yayılan kütleçekimsel radyasyon ölçülemeyecek kadar küçüktür. Ancak, ikili pulsar sistemlerde zaman içerisinde oluşan enerji kaybı olarak kütleçekim radyasyonunun dolaylı gözlemi yapılabilmiştir. PSR B1913+16 bu tip pulsarlara bir örnektir. Nötron yıldızı birleşmelerinde ve kara delik oluşumlarının da tespit edilebilir büyüklükte kütleçekim radyasyonu oluşturabileceği düşünülmektedir. Lazer İnterferometre Kütleçekimsel Dalga Gözlemevi (LIGO) gibi kütleçekimsel radyasyon gözlem evleri, bu problem üzerinde çalışmak üzere inşa edilmişlerdir. 2016 yılının Şubat ayında, Gelişmiş LIGO takımı kara deliklerin çarpışmasından doğan kütleçekimsel dalgaları keşfettiklerini açıkladılar. 14 Eylül 2015 tarihinde LIGO, dünyadan 1.3 milyar ışık yılı uzaklıktaki iki kara deliğin çarpışmasından doğan kütleçekim dalgalarını ilk kez kayıt etti. Bu gözlemler, Einstein ve diğerlerinin, bu tip dalgaların var olduğuna ilişkin teorik tahminlerini teyit etmiştir. Olay aynı zamanda ikili kara delik sistemlerinin varlığını da göstermiş ve kütleçekimin doğasının, Büyük Patlama ve sonrası dahil evrendeki olayların anlaşılmasına yönelik olarak pratik gözlemlerin de önünü açmıştır.

    Kütleçekimin Hızı[değiştir | kaynağı değiştir]

    2012 yılının Aralık ayında, Çin’deki bir araştırma ekibi, dolunay ve yeni ay boyunca oluşan Dünya’nın gelgitleri arasındaki faz gecikmesini bulduğunu açıkladı. Bu sonuçlar, kütleçekimin hızının ışık hızı ile aynı olduğunu gösteriyordu. Bunun anlamı şudur; eğer güneş bir anda ortadan kaybolacak olsa, dünya, ışığın bu mesafeyi kat etmesi için gereken süre olan 8 dakika daha normal bir şekilde yörüngesinde kalacaktır. Takımın bulguları Şubat 2013 tarihli Çin Bilim Bülteni’nde yayınlanmıştır.

    Anormallikler ve Çelişkiler[değiştir | kaynağı değiştir]

    Mevcut teori ile açıklanamayan bazı gözlemler de bulunmaktadır. Bu gözlemlerin varlığı, daha iyi kütleçekim teorilerinin yapılması gerektiğine işaret ediyor olabilir veya bilim insanlarını farklı açıklama yollarına sevk edebilir.

    Ayrıca bakınız[değiştir | kaynağı değiştir]

    Kaynakça[değiştir | kaynağı değiştir]

    Yazı kaynağı : tr.wikipedia.org

    Yorumların yanıtı sitenin aşağı kısmında

    Ali : bilmiyorum, keşke arkadaşlar yorumlarda yanıt versinler.

    Yazının devamını okumak istermisiniz?
    Ali 10 Ay önce
    0

    bilmiyorum, keşke arkadaşlar yorumlarda yanıt versinler.

    Yorum yap