Bu sitede bulunan yazılar memnuniyetsizliğiniz halınde olursa bizimle iletişime geçiniz ve o yazıyı biz siliriz. saygılarımızla

    genellikle magmanın soğuyup katılaşması ile oluşan yapılardır

    1 ziyaretçi

    genellikle magmanın soğuyup katılaşması ile oluşan yapılardır bilgi90'dan bulabilirsiniz

    Magmatik kayaçlar

    Magmatik kayaçlar

    Magmatik kayaçlar, magmanın yükselerek yer kabuğunun içerisine girip veya yeryüzüne ulaşıp soğuyarak katılaşması sonucu oluşan kayaç türüdür. Üç ana kaya türünden biridir, diğerleri tortul ve metamorfiktir. Magmatik kaya magma veya lavın soğutulması ve katılaşmasıyla oluşur. Magmatik kayaçlar çok çeşitli jeolojik ortamlarda meydana gelir: kalkanlar, platformlar, orojenler, havzalar, büyük magmatik bölgeler, genişletilmiş kabuk ve okyanus kabuğu. (Resim1) Magmatik kayaçlar temel olarak silikat minerallerinden oluşmuşlardır. magmanın bileşimi temel bazı elementlerin dağılımını yansıtsa da oranları değişmekte ve bu da belli başlı magma tiplerinin oluşmasına neden olur.[1]

    Silisyum oksit bileşiğini barındırma oranlarına göre 3 tip magma belirlenmiştir. Bunlar: felsik (+%65), mafik(%45) ve ortaç(%45-65) magmalardır. Magmanın sahip olduğu bileşim fiziksel ve kimyasal özelliğinde karakteristik izler bırakmaktadır, örnek olarak en önemli özellik de viskozite (akmaya karşı direnç) özelliğidir. magmanın yapısındaki silisyum oksit de viskoziteyi artırmaktadır.[1] magmatik kayaçlar temel olarak 2 grupta toplanır:

    Plutonik Kayaçlar (Intrusive Magmatik Kayaçlar)

    Bu tür magmatik kayaçlar yüksek viskoziteli magmadan türerler, bu sayede mantodan oluştuktan sonra magma kütlesi yüzeye gelecek kadar ilerleyemez ve jeotermal etki nedeniyle (yerin derinliklerideki sıcaklık) hızlıca soğumaz ve iri taneli kristaller üreterek kaya oluşturur.

    Volkanik kayaçlar (Extrusive Magmatik Kayaçlar)

    İçeriklerinde, plütonik kayaçlara nazaran oldukça az silisyum oksit barındıran magmadan türeyen bu kayaçlar düşük viskoziteleri sayesinde magmatik oluşum sürecinin ardından hızlıca yeryüzüne ulaşırlar, bu durum sonrası ise ani sıcaklık düşüşüyle soğurlar ve büyük kristal üretemeden kayaç oluşur. Masif, küçük kristalli ve genelde koyu renkli kayaçlardır.

    Jeolojik Önem[değiştir | kaynağı değiştir]

    Magmatik ve metamorfik kayaçlar, Dünya kabuğunun en büyük 16 km'sinin% 90-95'ini hacim olarak oluşturur.[2] Magmatik kayaçlar, Dünya'nın şu anki toprak yüzeyinin yaklaşık %15'ini oluşturur.[3] Dünya'nın okyanus kabuğunun çoğu magmatik kayadan yapılır. 

    Jeolojik Ortam[değiştir | kaynağı değiştir]

    Oluşum biçimleri açısından, magmatik kayaçlar; dış püskürük (plütonik ve hipabissal) veya iç püskürük (volkanik) olarak ikiye ayrılır.

    Plutonik Kayaçlar (Derinlik) (Intrusive)[değiştir | kaynağı değiştir]

    Plütonik magmatik kayaçlar (derinlik) magmatik kayaçların çoğunluğunu oluşturur ve önceden var olan kaya (ülke kayası olarak adlandırılır) ile çevrili bir gezegenin kabuğunda (plüton olarak bilinir) soğuyan ve katılaşan magmadan oluşur; magma yavaş yavaş soğur ve sonuç olarak bu kayalar kaba taneli olurlar. Bu tür kayaçlardaki mineral taneleri genellikle çıplak gözle tanımlanabilir. Derinlik kayaçlar, müdahaleci gövdenin şekline ve büyüklüğüne ve içine girdiği diğer oluşumlarla olan ilişkisine göre de sınıflandırılabilir.Tipik plütonik oluşumlar, batolitler, stoklar, lakolitler, siller ve dikelardır. Magma yer kabuğunda katılaştığında, yavaş yavaş soğur ve granit, gabro veya diyorit gibi kaba dokulu kayaçlar oluşturur.

    Büyük dağ sıralarının merkezi çekirdekleri, genellikle granit olan müdahaleci magmatik kayaçlardan oluşur.Erozyona maruz kaldığında, bu çekirdekler (batolit olarak adlandırılır) Dünya yüzeyinin büyük bölgelerini işgal edebilir.

    Kabuğun derinliklerinde oluşan derinlik magmatik kayaçlar plütonik (veya abisal) kayaçlar olarak adlandırılır ve genellikle kaba tanelidir.

    Yüzeyin yakınında oluşan derinlik magmatik kayaçlara subvolkanik veya hipabissal kayaçlar denir ve genellikle orta tanelidir.

    Hipabyssal kayalar, plütonik veya volkanik kayalardan daha az yaygındır ve genellikle dikelar, siller, lakolitler, lopolitler veya facolitleri oluşturur.

    Volkanik Kayaçlar (Extrusive)[değiştir | kaynağı değiştir]

    Volkanik kayalar olarak da bilinen ekstrüzyonlu magmatik kayaçlar, manto ve kabuk içindeki kayaların kısmi erimesinin bir sonucu olarak kabuk yüzeyinde oluşur. Ekstrüzyonlu magmatik kayaçlar müdahaleci magmatik kayalardan daha hızlı soğur ve katılaşır. Erimiş magmanın yeryüzünde soğutulmasıyla oluşurlar. Çatlaklar veya volkanik patlamalar yoluyla yüzeye getirilen magma daha hızlı bir şekilde katılaşır. Dolayısıyla bu tür kayalar pürüzsüz, kristalimsi ve ince tanelidir. Bazalt yaygın bir ekstrüzyonlu magmatik kayadır ve lav akışları, lav tabakaları ve lav platoları oluşturur. Bazı bazalt türleri uzun sütunlu birleşmeler oluşturmak için katılaşır. Dev Geçit Antrim, Kuzey İrlanda bir örnektir.

    Magma; yeraltında bulunan, ergimiş haldeki kayaçlar. Kayaçların basınç düşmesi, sıcaklık yükselmesi, H2O ilavesi gibi etkenler altında ergimesi sonucu oluşan silikat hamuru durumundaki eriyiklerdir. Yeryüzüne ulaşarak yanardağlardan püsküren magmaya lav denir.

    Lavın (bir yanardağdan çıkan magma) davranışı, sıcaklık, bileşim, kristal içeriği ve içerdiği silika miktarı ile belirlenen viskozitesine bağlıdır. Çoğu bileşimde bazaltik olan yüksek sıcaklıklı magma, kalın yağa benzer şekilde davranır ve soğudukça, şekerleme yapar. lav yüzeyi uzun, ince bazalt akışları yaygındır. Andezit gibi ara kompozisyon magması, birbirine karışmış kül, tüf ve lav gibi kül konileri oluşturma eğilimindedir ve patladığında kalın, soğuk pekmez veya hatta kauçuğa benzer bir viskoziteye sahip olabilir. Felsic magma, örneğin riyolit, genellikle düşük sıcaklıkta patlar ve bazalt kadar kalındır. Riyolitik magmaya sahip volkanlar patlayıcı olarak patlar ve riyolitik lav akışları tipik olarak sınırlıdır ve magma çok kalın olduğu için dik kenar boşluklarına sahiptir.

    Genellikle şiddetli bir şekilde patlayan felsik ve ara magmalar, çözünmüş gazların salınmasından kaynaklanan patlamalar ile (tipik olarak su buharı, aynı zamanda karbondioksit) meydana gelir. Patlayan piroklastik malzeme tephra olarak adlandırılır ve tüf, aglomerat (yığılma) ve ignimbrit içerir. İnce volkanik kül de patlar ve genellikle geniş alanları kaplayabilen kül tüf tortuları oluşturur.

    Lav genellikle hızla soğuduğu ve kristalleştiği için genellikle ince tanelidir. Soğutma, ekstrüzyondan sonra küçük kristallerin bile oluşumunu önleyecek kadar hızlı olursa, elde edilen kaya çoğunlukla cam olabilir (kaya obsidyeni gibi ). Lavın soğutulması daha yavaş olsaydı, kaya kaba taneli olurdu.

    Mineraller çoğunlukla ince taneli olduğundan, farklı ekstrüzyonlu magmatik kayaçları ayırt etmek, farklı müdahaleci magmatik kayaçlar arasında ayrım yapmaktan çok daha zordur. Genel olarak, ince taneli ekstrüzyonlu magmatik kayaçların mineral bileşenleri, kayanın ince kesitlerinin mikroskop altında incelenmesiyle belirlenebilir, bu nedenle sahada sadece yaklaşık bir sınıflandırma yapılabilir.

    Sınıflandırma[değiştir | kaynağı değiştir]

    Magmatik kayalar, oluşum şekline, dokuya, mineralojiye, kimyasal bileşime ve magmatik gövdenin geometrisine göre sınıflandırılır.

    Birçok farklı magmatik kayaç türünün sınıflandırılması, bize oluşturdukları koşullar hakkında önemli bilgiler sağlayabilir. Magmatik kayaçların sınıflandırılması için kullanılan iki önemli değişken, büyük ölçüde soğutma geçmişine ve kayanın mineral bileşimine bağlı olan parçacık boyutudur. Feldispat, kuvars veya feldspathoidler, olivinler, piroksenler, amfiboller ve mikalar, hemen hemen tüm magmatik kayaçların oluşumunda önemli minerallerdir ve bu kayaçların sınıflandırılmasında temeldir. Mevcut diğer tüm mineraller hemen hemen tüm magmatik kayaçlarda gereksiz olarak kabul edilir ve bunlara yardımcı mineraller denir. Diğer temel minerallere sahip magmatik kayaç türleri çok nadirdir ve bu nadir kayaçlar esansiyel karbonatlara sahip olanları içerir.

    Basitleştirilmiş bir sınıflandırmada, magmatik kayaç türleri mevcut feldispat tipine, kuvarsın varlığına veya yokluğuna ve feldispat veya kuvars içermeyen kayalarda, demir veya magnezyum minerallerinin türüne göre ayrılır. Kuvars içeren kayaçlar (bileşimde silika) silika-aşırı doygundur. Feldspatoidli kayaçlar silika-doygun değildir, çünkü feldspatoidler kuvars ile kararlı bir ilişki içinde bir arada bulunamazlar.

    Çıplak gözle görülebilecek kadar büyük kristalleri olan magmatik kayalara faneritik denir; kristalleri görülemeyecek kadar küçük olanlara afanitik denir. Genel anlamda, faneritik müdahaleci bir köken anlamına gelir ;afanitik bir ekstrüzyon.

    Daha ince taneli bir matrise gömülü daha büyük, açıkça fark edilebilir kristalleri olan magmatik bir kayaya porfir denir. Porfritik doku, magmanın ana kütlesi daha ince taneli, tek tip malzeme olarak kristalleşmeden önce bazı kristaller önemli ölçüde büyüdüğünde gelişir.

    Magmatik kayaçlar doku ve kompozisyon bazında sınıflandırılır. Doku, kayanın oluştuğu mineral tanelerinin veya kristallerinin büyüklüğünü, şeklini ve düzenini ifade eder.

    Doku[değiştir | kaynağı değiştir]

    Doku, volkanik kayaların adlandırılmasında önemli bir kriterdir. Volkanik kayaların doku, boyutu dahil, şekil, oryantasyon ve mineral taneleri dağılımıdır volkanik kayalar; Kayanın tüf olup olmadığını belirleyecektir, bir piroklastik lav veya basit bir lav olabilir.

    Bununla birlikte, doku, volkanik kayaları sınıflandırmanın yalnızca bir alt parçasıdır, çünkü çoğu zaman, son derece ince taneli toprak kütlesine sahip kayalardan veya volkanik külden oluşabilen hava tüflerinden toplanan kimyasal bilgiler olmalıdır. Dokusal kriterler, minerallerin çoğunun çıplak gözle görülebileceği müdahaleci kayaların sınıflandırılmasında veya en azından bir el merceği, büyüteç veya mikroskop kullanılarak daha az kritiktir. Plütonik kayaçlar ayrıca dokusal olarak daha az çeşitlilik gösterir ve yapısal kumaşlar kazanmaya daha az eğilimlidir. Dokusal terimler, büyük plütonların farklı müdahaleci fazlarını, örneğin porfiritik marjları büyük müdahaleci cisimlere, porfir stoklarına ve subvolkanik penslere (apofizler) ayırmak için kullanılabilir. Mineralojik sınıflandırma çoğunlukla plütonik kayaçları sınıflandırmak için kullanılır. Volkanik kayaçları, örnek olarak kullanılan fenokrisst türleriyle, örneğin "olivin taşıyan pikrit" veya "ortoklaz-frikik riyolit" ile sınıflandırmak için kimyasal sınıflandırmalar tercih edilir.

    Kimyasal Sınıflandırma Ve Petroloji[değiştir | kaynağı değiştir]

    Magmatik kayaçlar kimyasal veya mineralojik parametrelere göre sınıflandırılabilir.

    Kimyasal: Modal veya mineralojik veriler küçük tane büyüklüğü nedeniyle belirlenemediğinde kullanılan volkanik kaya sınıflandırması için toplam alkali-silika içeriği (TAS diyagramı).

    Kimyasal sınıflandırma, aynı zamanda, TAS diyagramına göre kimyasal olarak benzer kayaları ayırt etmeye de uzanır, örneğin:

    İdeal bir mineraloji (normatif mineraloji) kimyasal bileşimden hesaplanabilir ve hesaplama eriyikten kristalize olan minerallerin tanımlanması için çok ince taneli veya çok değiştirilmiş kayalar için yararlıdır. Örneğin, normatif kuvars bir kayayı silika-aşırı doymuş olarak sınıflandırır; örnek riyolittir.Daha eski bir terminolojide, silika aşırı doygun kayaçlara silisik veya asidik denir, burada Si02% 66'dan büyüktür ve kuvarsolit ailesi terimi en silisik maddeye uygulanır. Normatif bir feldispatoid, bir kayayı silika-doygun olmayan olarak sınıflandırır; bir örnek nefelinittir.

    Magmalar ayrıca üç seriye ayrılmıştır:

    Bu üç magma serisi bir dizi plaka tektonik ortamında meydana gelir. Toleitik magma serisi kayalar, örneğin, okyanus ortası sırtlarında, arka-ark havzalarında, sıcak noktalar, ada yayları ve kıtasal büyük magmatik bölgelerden oluşan okyanus adalarında bulunur.[5] Her üç seri de, dağılımlarının derinlik ve batma bölgesinin yaşı ile ilişkili olduğu batma bölgelerinde birbirlerine nispeten yakın bulunur. Toleitik magma serisi, nispeten sığ derinliklerden magma tarafından oluşturulan genç alt bölme bölgelerinin üzerinde iyi temsil edilmektedir. Kireç-alkalin ve alkalin serileri olgun subuksiyon bölgelerinde görülür ve daha büyük derinliklerde magma ile ilişkilidir. Andezit ve bazaltik andezit, kals-alkalin magmaları gösteren ada yayında en bol bulunan volkanik kayadır. Bazı ada yayları, volkanik kayaçların siperden artan mesafeyle toleiit - kireç-alkalin - alkalinden değiştiği Japon ada yay sisteminde görüldüğü gibi volkanik seriler dağıtmıştır.[6][7]

    Sınıflandırma Tarihi[değiştir | kaynağı değiştir]

    1902'de bir grup Amerikalı petrograf, mevcut tüm magmatik kaya sınıflandırmalarının atılmasını ve yerine kimyasal analize dayalı "nicel" bir sınıflandırma yapılmasını önerdi. Mevcut terminolojinin büyük kısmının ne kadar belirsiz ve çoğu zaman bilimsel olmadığını gösterdiler ve magmatik bir kayanın kimyasal bileşiminin en temel özelliği olduğu için birincil konuma yükseltilmesi gerektiğini savundular.[8]

    Jeolojik oluşum, yapı, kaya türlerinin ayrımı için şimdiye kadar kabul edilen kriterler olan mineralojik anayasa arka plana düştü. Tamamlanan kaya analizi ilk olarak magma örneğin kuvars feldispatlar, olivin, akermannit, Feldspathoids, manyetit, korindon vb. Kristalleştiğinde oluşması beklenen kaya oluşturan mineraller açısından yorumlanmalıdır. kayalar kesinlikle bu minerallerin birbirine göre nispi oranına göre gruplara ayrılır.[8][9]

    Mineralojik Sınıflandırma[değiştir | kaynağı değiştir]

    Volkanik kayalar için lavların sınıflandırılması ve adlandırılmasında mineraloji önemlidir.En önemli kriter fenokrist türleridir, bunu zemin kütlesi mineralojisi izler. Genellikle, yer kütlesinin afanitik olduğu durumlarda, bir volkanik kayayı doğru bir şekilde tanımlamak için kimyasal sınıflandırma kullanılmalıdır.

    Mineralojik içerikler - felsik ve mafik

    İntrüzif kayaçlar, plütonik ve genellikle faneritik magmatik kayaçlar için (tüm minerallerin en azından mikroskopla görülebildiği yerlerde), mineraloji kayayı sınıflandırmak için kullanılır. Bu genellikle kayayı sınıflandırmak için üç mineralin nispi oranlarının kullanıldığı üçlü diyagramlarda gerçekleşir.

    Aşağıdaki tablo, hem bileşimlerine hem de oluşum biçimine göre magmatik kayaçların basit bir alt bölümüdür.

    Daha ayrıntılı bir sınıflandırma için QAPF diyagramına bakınız.

    Sınıflandırma örneği[değiştir | kaynağı değiştir]

    Granit, felsik bileşim (silika ve ağırlıklı olarak kuvars artı potasyum açısından zengin feldispat artı sodyum açısından zengin plajiyoklaz) ve hayali, Euhedral doku (mineraller çıplak gözle görülür ve minerallerden bazıları gözle görülür) ile magmatik bir müdahaleci kayadır. (derinlikte kristalizedir.). orijinal kristalografik şekillerini korurlar).

    Magma Oluşumu[değiştir | kaynağı değiştir]

    Yerkabuğu kıtaların altında ortalama 35 kilometre kalınlığındadır, ancak okyanusların sadece 7-10 kilometre altındadır. Kıtasal kabuk esas olarak granülit ve granit dahil olmak üzere çok çeşitli metamorfik ve magmatik kayaçlardan oluşan kristalin bir zemin üzerinde duran tortul kayaçlardan oluşur. Okyanus kabuğu esas olarak bazalt ve gabrodan oluşur. Hem kıtasal hem de okyanus kabuğu, mantonun peridotitine dayanır.

    Kayaçlar, basınçtaki bir azalmaya, bileşimdeki bir değişikliğe (su ilavesi gibi), sıcaklıktaki bir artışa veya bu işlemlerin bir kombinasyonuna yanıt olarak eriyebilir.

    Bir göktaşı etkisinden erime gibi diğer mekanizmalar bugün daha az önemlidir, ancak Dünya'nın yığılması sırasındaki etkiler geniş bir erimeye yol açtı ve erken Dünya'nın birkaç yüz kilometresi muhtemelen bir magma okyanusuydu.Büyük göktaşlarının son birkaç yüz milyon yıldaki etkileri, birkaç büyük magmatik bölgenin geniş bazalt magmatizminden sorumlu bir mekanizma olarak önerilmiştir.

    Baskıyı (basıncı) azaltma[değiştir | kaynağı değiştir]

    Basınç düşürme nedeniyle dekompresyon eritme meydana gelir.[10]

    Katılaşma en kayaların Sıcaklık, suyun yokluğunda basıncın yükseltilmesi ile artış (sıcaklıkları altında tamamen katı olan). Dünya'nın mantosundaki peridotit, bazı sığ seviyelerde solidus sıcaklığından daha sıcak olabilir. Katı kaya konveksiyonu sırasında böyle bir kaya yükselirse, adyabatik bir süreçte genişledikçe biraz soğuyacaktır, ancak soğutma kilometre başına sadece yaklaşık 0.3 °C'dir. Uygun peridotitin deneysel çalışmaları, solidus sıcaklıklarının kilometre başına 3 °C ila 4 °C arttığını belgelemektedir. Kaya yeterince yükselirse, erimeye başlar. Eriyik damlacıkları daha büyük hacimlerde birleşebilir ve yukarı doğru sokulabilir. Katı mantonun yukarı doğru hareketinden bu erime süreci, Dünya'nın evriminde kritik öneme sahiptir.

    Dekompresyon eritme, okyanus ortası sırtlarında okyanus kabuğunu oluşturur. Ayrıca Avrupa, Afrika ve Pasifik deniz tabanı gibi iç kısım bölgelerinde volkanizmaya neden olur.[11]

    Su ve Karbondioksitin Etkileri[değiştir | kaynağı değiştir]

    Magmanın oluşumundan en çok sorumlu kaya kompozisyonunun değişimi, suyun ilave edilmesidir. Su, belirli bir basınçta kayaların solidus sıcaklığını düşürür. Örnek olarak, yaklaşık 100 kilometre derinlikte, peridotit fazla su varlığında 800 °C'ye yakın, ancak su yokluğunda yaklaşık 1.500 °C'nin yakınında veya üzerinde erimeye başlar.[12] Su, batma bölgelerinde okyanus litosferinden çıkarılır ve üstteki mantoda erimeye neden olur. Bazalt ve andezitten oluşan sulu magmalar, doğrudan ve dolaylı olarak, batma işlemi sırasında dehidrasyonun bir sonucu olarak üretilir. Bu tür magmalar ve onlardan türetilenler, Pasifik Ateş Çemberi gibi ada yayları oluştururlar. Bu magmalar, kıtasal kabuğun önemli bir parçası olan kireç-alkali serisinin kayalarını oluşturur.

    Karbondioksitin eklenmesi, magma oluşumunun su ilavesinden çok daha az önemli bir nedenidir, ancak bazı silika doygun olmayan magmaların oluşumu, manto kaynak bölgelerinde su üzerinde karbon dioksitin baskınlığına atfedilmiştir. Karbondioksit varlığında deneyler, peridotit solidus sıcaklığının, yaklaşık 70 km derinliğe karşılık gelen basınçlarda dar bir basınç aralığında yaklaşık 200 °C azaldığını belgelemektedir. Daha büyük derinliklerde, karbondioksit daha fazla etkiye sahip olabilir: yaklaşık 200 km'ye kadar olan derinliklerde, karbonatlı bir peridotit bileşiminin ilk erime sıcaklıklarının, karbondioksit içermeyen aynı bileşimden 450 °C ila 600 °C daha düşük olduğu belirlenmiştir.[13] Nefelinit, karbonatit ve kimberlit gibi kaya türlerinin magmaları, yaklaşık 70 km'den daha büyük derinliklerde manto içine karbondioksit akışı sonrasında üretilenler arasındadır.

    Sıcaklık artışı[değiştir | kaynağı değiştir]

    Sıcaklık artışı, kıtasal kabuk içinde magma oluşumu için en tipik mekanizmadır. Bu sıcaklık artışları magmanın mantodan yukarı doğru girmesi nedeniyle meydana gelebilir. Sıcaklıklar aynı zamanda, bir levha tektoniği sıkıştırma ile kalınlaştırılmış kıtasal kabuktaki kabuklu bir kayanın solidusunu da aşabilir. Hint ve Asya kıtasal kütleleri arasındaki plaka sınırı, sınırın hemen kuzeyindeki Tibet Platosu'nun yaklaşık 80 kilometre kalınlığında, normal kıtasal kabuğun kalınlığının kabaca iki katı olduğu için iyi çalışılmış bir örnek sağlar. Manyetotellürik verilerden çıkarılan elektriksel direnç çalışmaları, silikat içerdiği görülen bir tabaka tespit etmiştir. Erime ve Tibet Platosu'nun güney kenarı boyunca orta kabuk içinde en az 1.000 kilometre uzanır.  Granit ve riyolit, sıcaklıktaki artıştan ötürü kıtasal kabuğun erimesinin ürünleri olarak yorumlanan magmatik kaya türleridir. Sıcaklık artışları ayrıca bir yitim zonu sürüklenen litosferin erimesine de katkıda bulunabilir .

    Magma Evrimi[değiştir | kaynağı değiştir]

    Ana madde: Magmatik farklılaşma

    Çoğu magma, tarihlerinin sadece küçük bir kısmı için tamamen erir. Daha tipik olarak, eriyik ve kristallerin ve bazen de gaz kabarcıklarının karışımlarıdır. Erime, kristaller ve kabarcıklar genellikle farklı yoğunluklara sahiptir ve bu nedenle magmalar geliştikçe ayrılabilirler. Magma soğudukça mineraller tipik olarak farklı sıcaklıklarda eriyikten kristalleşirler. (fraksiyonel kristalleşme) Mineraller kristalleştikçe, artık eriyiğin bileşimi tipik olarak değişir.

    Eğer kristaller eriyikten ayrılırsa, artık eriyik bileşimde ana magmadan farklı olacaktır. Örnek olarak, gabroik bileşimin bir magması, erken oluşan kristaller magmadan ayrılırsa, granit bileşimin artık bir eriyiğini üretebilir. Gabro 1.200 °C'ye yakın bir sıvı sıcaklığına sahip olabilir ve türev granit bileşimi eriyik, yaklaşık 700 °C'ye kadar düşük bir sıvı sıcaklığına sahip olabilir. Uyumsuz elementler, fraksiyonel kristalleşme sırasında magmanın son kalıntılarında ve kısmi erime sırasında üretilen ilk eritmelerde konsantre edilir: her iki işlem de, uyumsuz elementlerde yaygın olarak zenginleştirilmiş bir kaya türü olan pegmatit kristalleşen magmayı oluşturabilir. Bowen'in reaksiyon serisi, bir magmanın idealleştirilmiş fraksiyonel kristalizasyon dizisini anlamak için önemlidir.

    Magma bileşimi, kısmi erime ve fraksiyonel kristalleştirme dışındaki işlemlerle belirlenebilir. Örnek olarak; magmalar, hem bu kayaları eriterek hem de onlarla reaksiyona girerek, rahatsız ettikleri kayalarla etkileşime girer. Farklı kompozisyonlardaki magmalar birbirleriyle karışabilir. Nadir durumlarda, eriyikler, zıt kompozisyonların karışmaz iki eriyiğine ayrılabilir.

    Yaygın magmatik kayaçların oluşumunda önemli olan nispeten az sayıda mineral vardır, çünkü minerallerin kristalleştiği magma sadece belirli elementler açısından zengindir. Bu elementler; silikon, oksijen, alüminyum, sodyum, potasyum, kalsiyum, demir ve magnezyum. Bu elementler, tüm magmatik kayaçların yüzde doksanından fazlasını oluşturan silikat minerallerini oluşturmak için birleştirilen elementlerdir. Magmatik kayaçların kimyası, büyük (majör) ve küçük (minör) elementler ve iz elementler için farklı şekilde ifade edilir. Majör ve Minör elementlerin içeriği geleneksel olarak ağırlık yüzdesi oksitler (örneğin, %51 SiO2 ve %1.50 TiO2) olarak ifade edilir. İz (eser) elementlerin bolluğu geleneksel olarak ağırlıkça milyonda parça (örnek olarak, 420 ppm Ni ve 5.1 ppm Sm) olarak ifade edilir. "İz element" terimi tipik olarak 100 ppm'den az bolluktaki çoğu kayada bulunan elementler için kullanılır, ancak bazı iz elementler 1000 ppm'yi aşan bolluklarda bazı kayaçlarda bulunabilir. Kaya kompozisyonlarının çeşitliliği, büyük bir analitik veri kütlesi tarafından tanımlanmıştır-230.000'den fazla kaya analizine, ABD Ulusal Bilim Vakfı tarafından desteklenen bir site aracılığıyla web üzerinden erişilebilir.

    Etimoloji[değiştir | kaynağı değiştir]

    " magmatik " kelimesi "ateş" anlamına gelen  Latince  ıgneus’tan  türetilmişir. Magmatik kelimesinin etimolojisi de IGN (is)  (“ ateş ”) + -eus  (“ -lı ”, türetme eki) bu şekildedir. . . Volkanik kayalar  Vulkan ateş tanrısı için  , Roma adını almıştır.   İç püskürük kayalara, yeraltı dünyasının Roma tanrısı Pluto'nun adını taşıyan "plütonik" kayalar da denir.

    Galeri[değiştir | kaynağı değiştir]

    Kaynakça[değiştir | kaynağı değiştir]



    Yazı kaynağı : tr.wikipedia.org

    Magma

    Magma

    Magma, yeraltında bulunan, ergimiş haldeki kayaçlar. Kayaçların basınç düşmesi, sıcaklık yükselmesi, H2O ilavesi gibi etkenler altında ergimesi sonucu oluşan silikat hamuru durumundaki eriyiklerdir. Yeryüzüne ulaşarak yanardağlardan püsküren magmaya lav denir. Magma, dünya yüzeyinin altında bulunur ve diğer karasal gezegenlerde ve bazı doğal uydularda da magmatizmanın kanıtı keşfedilmiştir.[1] Erimiş kayanın yanı sıra, magma ayrıca kristaller ve volkanik gazlar içerebilir.[2]

    Magma, yitim bölgeleri, kıtasal yarık bölgeleri, orta okyanus sırtları ve sıcak noktalar dahil olmak üzere çeşitli tektonik ortamlarda manto veya kabuğun erimesi ile üretilir.[3] Manto ve kabuk eriyikleri, magma odalarında[4] veya trans-kabuk kristal zengini lapa zonlarında depolandıkları düşünülen kabuktan yukarı doğru hareket ederler.[5] Kabukta depolanmaları sırasında, magma bileşimleri fraksiyonel kristalizasyon, kabuk eriyikleri ile kontaminasyon, magma karıştırma ve gaz giderme yoluyla değiştirilebilir.

    Magma çalışması tarihsel olarak lav akışları şeklinde magmayı gözlemlemeye dayanırken, jeotermal sondaj projeleri sırasında üç kez yerinde görülmüştür - İzlanda'da iki kez ve bir kez Hawaii'de.[6][7][8]

    Magmanın katılaşmasıyla magmatik kayaçlar oluşur. Üç tür magmatik kayaç vardır. Bunlar derinlik, yarı derinlik ve yüzey kayaçlarıdır.

    Eğer magma derinlerde soğursa iri kristaller oluşur. Derinlerde magma ile ortam arasındaki ısı farkı azdır. Çünkü derinlere inildikçe yerin ısısı artar. (Jeotermal gradyan -1 km'de 33 °C) magma ile ortam arasında ısı farkı az olduğu için iri kristaller oluşur. Derinlik kayaçları tamamen iri kristallerden oluşur. Ve kristaller yaklaşık eş boyutludur.

    Magma yarı derinlikte soğursa hem iri hem de küçük kristaller oluşur. Yarı derinlik kayaçları, başka bir deyişle damar kayaçları tamamen kristalli ve kristaller iki farklı tane boyutundadır.

    Magma yüzeyde soğursa tamamen kristalli bir kayaç oluşmaz. Bunun nedeni yüzeyde magma ile ortam arasındaki ısı farkı fazla olması ve buna bağlı olarak magmanın hızlı soğumasıdır.

    Magmanın yerkabuğuna çıkması ile yanardağ patlamaları oluşur.

    Magmanın fiziksel ve kimyasal özellikleri[değiştir | kaynağı değiştir]

    Çoğu magmatik sıvı silika bakımından zengindir.[9] Silikat eriyikleri esas olarak silikon, oksijen, alüminyum, demir, magnezyum, kalsiyum, sodyum ve potasyumdan oluşur. Eriyiklerin fiziksel davranışları atomik yapılarının yanı sıra sıcaklık, basınç ve bileşime bağlıdır.[10]

    Viskozite, magmaların davranışını anlamada önemli bir erime özelliğidir. Daha silika bakımından zengin eriyikler, daha fazla silika tetrahedra bağlantısı ile tipik olarak daha polimerize edilir ve dolayısıyla daha viskozdur. Suyun çözünmesi eriyik viskozitesini büyük ölçüde azaltır. Daha yüksek sıcaklık eriyikleri daha az viskozdur. Ayrıca, silikat eriyiği (magmanın sıvı fazı) viskoelastiktir, yani düşük gerilimler altında bir sıvı gibi akar, ancak uygulanan gerilim kritik bir değeri aştığında, eriyik gerilimi tek başına gevşetme yoluyla yeterince hızlı dağıtamaz, bu da geçici kırılmaya neden olur. Stresler kritik eşiğin altına düştüğünde, eriyik bir kez daha viskoz bir şekilde gevşer ve kırığı iyileştirir.[11]

    Genel olarak konuşursak, bazalt oluşturanlar gibi daha mafik magmalar, riyolit oluşturanlar gibi daha silika bakımından zengin magmalardan daha sıcak ve daha az viskozdur. Düşük viskozite, daha yumuşak, daha az patlayıcı püskürmelere yol açar

    Birkaç farklı magma türünün özellikleri aşağıdaki gibidir:

    Ultramafik (pikrit)

    SiO 2 {\displaystyle {\ce {SiO2}}} < 45%

    Fe {\displaystyle {\ce {Fe}}} - Mg {\displaystyle {\ce {Mg}}} > 8% ila 32% MgO {\displaystyle {\ce {MgO}}}

    Sıcaklık: 1500 °C'ye kadar

    Viskozite: Çok Yavaş

    Erüptif davranış: yumuşak veya çok patlayıcı

    Dağılım: Sıcak noktalar,yakınsak plaka sınırları

    Mafik (Bazaltik)

    SiO 2 {\displaystyle {\ce {SiO2}}} < 50%

    FeO {\displaystyle {\ce {FeO}}} ve MgO {\displaystyle {\ce {MgO}}} tipik olarak <% 10 wt

    Sıcaklık: ~1300 °C'ye kadar

    Viskozite: Yavaş

    Erüptif davranış: Sakin

    Dağılım: Sıcak noktalar, yakınsak plaka sınırları

    Orta Düzey (Andezit)

    SiO 2 {\displaystyle {\ce {SiO2}}} ~60%

    Fe {\displaystyle {\ce {Fe}}} - Mg {\displaystyle {\ce {Mg}}} : ~3%th

    Sıcaklık: ~1000 °C

    Viskozite: Orta Düzey

    Erüptif davranış: Patlayıcı

    Dağılım: Yakınsak plaka sınırları, ada yayları

    Felsik (riyolitik)

    SiO 2 {\displaystyle {\ce {SiO2}}} > 70%

    Fe {\displaystyle {\ce {Fe}}} - Mg {\displaystyle {\ce {Mg}}} : ~2%

    Sıcaklık: <900 °C

    Viskozite: Yüksek

    Erüptif davranış: Patlayıcı

    Dağılım: Kıta kabuğundaki (Yellowstone Milli Parkı) ve kıta yarıklarındaki sıcak noktalarda yaygındır.

    Sıcaklık[değiştir | kaynağı değiştir]

    Çoğu magmanın sıcaklıkları 700 °C ila 1300 °C (veya 1300 °F ila 2400 °F) arasındadır, ancak çok nadir bulunan karbonatit magmaları 490 °C kadar soğuk [12] komatit magmalar ise 1600 °C kadar sıcak olabilir.[13] Herhangi bir basınçta ve herhangi bir kaya bileşimi için, katılaşmayı geçen sıcaklıktaki bir artış erimeye neden olur. Katı toprak içinde, bir kayanın sıcaklığı jeotermal gradyan ve kaya içindeki radyoaktif bozunma tarafından kontrol edilir. Yer ısısı ortalama 25 °C / km'dir ve okyanus çukurları ve dalma bölgeleri içindeki düşük 5-10 °C / km'den okyanus ortası sırtları ve volkanik ark ortamları altında 30-80 °C / km'ye kadar geniş bir aralıkta ortalama 25 °C / km'dir.

    Büyük bir kaya kütlesinin toplu bileşimini değiştirmek genellikle çok zordur, bu nedenle bileşim, herhangi bir sıcaklık ve basınçta bir kayanın eriyip erimeyeceği konusunda temel kontroldür. Bir kayanın bileşiminin, su ve karbondioksit gibi uçucu fazları içerdiği de düşünülebilir.

    Basınç altındaki bir kayada uçucu fazların varlığı, eriyik bir fraksiyonu stabilize edebilir. Hatta% 0,8'lik suyun varlığı erime sıcaklığını 100 °C'ye kadar düşürebilir. Tersine, bir magmadan su ve uçucuların kaybı, magmanın esasen donmasına veya katılaşmasına neden olabilir.

    Ayrıca hemen hemen tüm magmanın büyük bir kısmı, bir silikon ve oksijen bileşiği olan silikadır. Magma ayrıca magma yükseldikçe genişleyen gazlar içerir. Yüksek silika içeren magma akmaya karşı dirençlidir, bu nedenle içinde genişleyen gazlar hapsolur. Gazlar şiddetli, tehlikeli bir patlamayla patlayana kadar basınç artar. Silika bakımından nispeten zayıf olan magma kolayca akar, bu nedenle gaz kabarcıkları içinden yukarı hareket eder.

    Kısmi erime ile magmanın kökeni[değiştir | kaynağı değiştir]

    Kısmi erime[değiştir | kaynağı değiştir]

    Katı kayaların magma oluşturmak için erimesi üç fiziksel parametre tarafından kontrol edilir: sıcaklık, basınç ve bileşim.Mantodaki magma oluşumunun en yaygın mekanizmaları dekompresyon eritme,[15] ısıtma (örneğin, sıcak manto bulutuyla etkileşim yoluyla[16]) ve katılaşmanın düşürülmesidir (örneğin, su ilavesi gibi bileşim değişiklikleri ile[17]). Mekanizmalar, magmatik kayanın girişinde daha ayrıntılı tartışılmıştır.

    Kayalar eridiğinde, bunu yavaş ve kademeli olarak yaparlar çünkü çoğu kayaç, hepsi farklı erime noktalarına sahip birkaç mineralden yapılmıştır; dahası, erimeyi kontrol eden fiziksel ve kimyasal ilişkiler karmaşıktır.Örneğin bir kaya eridikçe hacmi değişir. Yeterli kaya eridiğinde, küçük eriyik kürecikleri (genellikle mineral taneleri arasında oluşur) kayayı birbirine bağlar ve yumuşatır.Yeryüzündeki basınç altında, kısmi erimenin yüzde bir kısmının çok küçük bir bölümü, eriyiğin kaynağından sıkıştırılmasına neden olmak için yeterli olabilir.[18] Eriyikler % 20 veya hatta % 35'e kadar eriyecek kadar uzun süre yerinde kalabilir, ancak kayaçlar nadiren% 50'den fazla erir, çünkü eriyen kaya kütlesi sonunda kristal ve eriyen bir lapa haline gelir ve daha sonra toplu halde yükselebilir. diyapir, daha sonra dekompresyon erimesine neden olabilir.

    Kısmi erime derecesi, ürettiği magmanın özelliklerinin belirlenmesi için kritiktir ve bir eriyik oluşma olasılığı, uyumsuz ve uyumlu elemanların dahil olduğu dereceleri yansıtır. Uyumsuz elementler arasında genellikle potasyum, baryum, sezyum ve rubidyum bulunur.

    Dünya'nın mantosunda küçük derecelerde kısmi erime ile üretilen kaya türleri tipik olarak alkali (Ca, Na), potasik (K) veya peralkalindir (alüminyumun silikaya oranının yüksek olduğu). Tipik olarak, bu bileşimin ilkel erimeleri, lamprophyre, lamproite, kimberlite ve bazen alkali bazaltlar ve esseksite gabrolar veya hatta karbonatit gibi nefelin içeren mafik kayaçları oluşturur.

    Pegmatit, kabuğun düşük dereceli kısmi erimesi ile üretilebilir. Bazı granit bileşimli magmalar ötektik (veya kotektik) eriyiklerdir ve kabuğun düşük ila yüksek derecelerde kısmi erimesi ve ayrıca fraksiyonel kristalleşme ile üretilebilir. Kabuğun yüksek dereceli kısmi erimesinde, tonalit, granodiyorit ve monzonit gibi granitoidler üretilebilir, ancak diğer mekanizmalar tipik olarak bunların üretiminde önemlidir.

    Magmanın katılaşması[değiştir | kaynağı değiştir]

    Kristalleşen mineraller yüksek sıcaklıkta ve uçucu bileşen bakımından fakir bir magmadan itibaren oluşurlar. Bu minerallere pirojenetik mineraller denir.

    Pirojenetik minerallerin kristalleşip ayrılmasıyla magma uçucu bileşenler bakımından oldukça zenginleşir ve böylece bünyesinde hidroksil bulunan hidrojenetik mineraller ayrılır. Magmanın katılaşması sıcaklık ve uçucu bileşen miktarına bağlı olarak 4 evreye ayrılır.

    Ortomagmatik evre[değiştir | kaynağı değiştir]

    Bu evrede ilk kristalleşmelerle pirojenetik mineraller ayrılır. (1200 - 900 °C) Daha sonra hidrojenetik mineraller ayrılır. (900 - 700 °C)

    Pegmatitik evre[değiştir | kaynağı değiştir]

    Sıcaklık 700-500 °C arasındadır. Buhar basıncı çok yüksektir. Esas kristallenmeden sonra mağmanın büyük bir kısmı kristallenmiş ve geriye uçucu birleşen bakımından zengin bir artık çözelti kalmıstır. Bu artık çözeltiler son derce akıcı ve hareketlidir. Bunlar yan kayaç ve boşluklarına girerek pegmatitleri oluşturur. Çok büyük ekonomik değere sahip turmalin, topaz, beril gibi kristallerle Sn, U, Th gibi elementler içeren maden yataklarını oluşturlar.

    Pnömatolitik evre[değiştir | kaynağı değiştir]

    Magmanın katılaşması süreçlerinde gaz basıncının en yüksek olduğu ve sıcaklığın 500 - 400 °C arasında olduğu evredir.

    Hidrotermal evre[değiştir | kaynağı değiştir]

    Magmanın katılaşmasında son evredir. Sıcaklık 400 °C den düşüktür. Gaz basıncı ise oldukça azalır. Bu evrede çözeltiler çevre kayaçlardaki çatlak ve boşluklara girer, buralarda yeni mineraller oluşturur veya kayaçtaki bazı minerallerin mineralojik bileşimlerini değiştirir. Altın, gümüş, bakır gibi ekonomik değere sahip maden yatakları bu evrede oluşur. Hidrotermal evreden sonra sadece sadece su kalır. Magmanın katılaşması sona ermiştir.

    Magmatik farklılaşma[değiştir | kaynağı değiştir]

    Magma oluştuğu andan itibaren tamamen katılaşana kadar birtakım aşamalardan geçer. Her aşamada ilk oluştuğu durumdan farklılaşır. Buna magmatik farklılaşma denir. Magmatik farklılaşma dört alt süreci kapsar.

    Likuasyon[değiştir | kaynağı değiştir]

    Magmanın farklı özellik gösteren kısmi sıvılara ayrılma sürecidir. (Sıvı halde karışmazlık)

    Fraksiyonel kristalleşme[değiştir | kaynağı değiştir]

    Kristalleşen minerallerin eriyiği terk etmesi. Bu nedenle eriyiğin kimyasal bileşimi devamlı olarak değişir. Magmatik farklılaşma süreçleri içerisinde en önemlisidir.

    Kristalleşen minerallerin eriyik ile temasının kesilmesi halinde fraksiyonel kristalleşmeden söz edilebilir. Minerallerin magma ile temasının kesilmemesi halinde minerallerin bileşimi eriyik ile reaksiyona girmeleri halinde devamlı olarak değişecektir.

    Mineral ile eriyik arasında iki reaksiyon şekli gelişir. Bunlar kesikli ve kesiksiz reaksiyon serileridir.

    İlk kristalleşen mineral olivin olacaktır. Ve belli bir sıcaklık derecesine kadar oluşmaya devam edecektir. Ve eriyik SiO2 bakımından oldukça zenginleşecektir. Daha sonra olivin eriyik ile reaksiyona girerek piroksen mineraline dönüşecektir.

    Mg2SiO4 + SiO2 → 2MgSiO3

    Bir mineralin eriyik ile reaksiyona girerek başka bir minerale dönüştüğü bu reaksiyon serisine kesikli reaksiyon serisi adı verilir.

    Kesiksiz reaksiyon serisinde ise katı çözelti serisi teşkil eden bir mineralin kimyasal bileşimi devamlı olarak değişir.

    Burada ortoklaz, biyotit ile plajiyoklas'ın reaksiyonu sonucu oluşmamaktadır.

    Gazlarla taşınma[değiştir | kaynağı değiştir]

    Uçucu bileşenlerin magma odasının bir kısmından kaçarak başka bir kısmında birikmesi, bu esnada bazı elementleri beraberinde taşıması ve böylece magma odasında farklı bileşime sahip kısımların ortaya çıkmasıdır.

    Termogravitasyonel difüzyon[değiştir | kaynağı değiştir]

    Magma odasındaki magma uzun süre beklerse ve katılaşmazsa eriyiğin her tarafında bileşim aynı olmaz. Ağır olan elementler aşağı çöker, hafif olanlar ise yukarı çıkar. Ve böylece magma odasında farklı bileşime sahip kısımlar ortaya çıkar.

    Magmaların evrimi[değiştir | kaynağı değiştir]

    Birincil erir[değiştir | kaynağı değiştir]

    Kaya eridiğinde sıvı birincil eriyiktir. Birincil eriyikler herhangi bir farklılaşmaya uğramamış ve bir magmanın başlangıç bileşimini temsil etmektedir. Doğada birincil eriyikleri bulmak nadirdir. Migmatitlerin lökozomları birincil eriyik örnekleridir. Mantodan türetilen birincil eriyikler özellikle önemlidir ve ilkel eriyikler veya ilkel magmalar olarak bilinir. Bir magma serisinin ilkel magma bileşimini bularak, bir eriyiğin oluştuğu mantonun bileşimini modellemek mümkündür; bu, mantonun evrimini anlamak için önemlidir.

    Ebeveyn erir[değiştir | kaynağı değiştir]

    İlkel veya birincil magma bileşimini bulmak imkânsız olduğunda, ebeveyn erimesini belirlemeye çalışmak Genellikle yararlıdır. Ebeveyn eriyiği, gözlenen magma kimyası aralığının magmatik farklılaşma süreçleri tarafından türetildiği bir magma bileşimidir. İlkel bir eriyik olması gerekmez.

    Örneğin, bir dizi bazalt akışının birbiriyle ilişkili olduğu varsayılır. Makul olarak fraksiyonel kristalizasyon yoluyla üretilebilecekleri bir kompozisyon, ebeveyn eriyiği olarak adlandırılır. Fraksiyonel kristalleşme modelleri, ortak bir ebeveyn erimesini paylaştıkları hipotezini test etmek için üretilecektir.

    Mantonun yüksek derecede kısmi erimesinde, komatit ve pikrit üretilir.

    Magmaların göçü ve kalınlaşması[değiştir | kaynağı değiştir]

    Magma, sıcaklık ve basınç koşullarının erimiş hal için elverişli olduğu manto veya kabuk içinde gelişir. Magma, oluşumundan sonra yüzer bir şekilde Dünya yüzeyine doğru yükselir. Kabuktan geçerken magma toplanabilir ve magma odalarında kalabilir[5] (son çalışmalar, magmanın baskın sıvı magma odaları yerine trans-kabuk kristal zengini lapalarda depolanabileceğini öne sürse de. Magma soğuyana ve kristalleşip volkanik kaya oluşturana, bir volkan olarak patlayana veya başka bir magma odasına geçene kadar bir odada kalabilir. Magmanın değiştiği bilinen iki süreç vardır: kabuk veya manto içinde kristalleşerek bir plüton oluşturarak, veya volkanik püskürme yoluyla lav veya tephra haline gelir.

    Plütonizm[değiştir | kaynağı değiştir]

    Magma soğuduğunda katı mineral fazları oluşturmaya başlar. Bunlardan bazıları magma odasının dibine yerleşerek, mafik katmanlı intrüzyonlar oluşturabilecek kümülatlar oluşturur. Bir magma odası içinde yavaşça soğuyan magma, genellikle magmanın bileşimine bağlı olarak gabro, diyorit ve granit gibi plütonik kayaların gövdelerini oluşturur. Alternatif olarak, magma püskürtülürse, bazalt, andezit ve riyolit (sırasıyla gabro, diyorit ve granitin ekstrüzif eşdeğerleri) gibi volkanik kayaçlar oluşturur.

    Volkanizma[değiştir | kaynağı değiştir]

    Volkanik bir patlama sırasında yeraltını terk eden magmaya lav denir. Lav, yeraltı magma kütlelerine kıyasla nispeten hızlı bir şekilde soğur ve katılaşır. Bu hızlı soğutma, kristallerin büyümesine izin vermez ve eriyiğin bir kısmı hiç kristalleşerek cama dönüşür. Büyük ölçüde volkanik camdan oluşan kayalar obsidiyen, çürükçü ve süngertaşı içerir.

    Volkanik püskürmelerden önce ve sırasında, CO2 ve H2O gibi uçucular, eriyik olarak bilinen bir işlemle eriyiği kısmen terk eder. Düşük su içeriğine sahip magma giderek daha yapışkan hale gelir. Volkanik bir patlama sırasında magma yukarı doğru hareket ettiğinde kitlesel bir çözülme meydana gelirse, ortaya çıkan patlama genellikle patlayıcıdır.

    Enerji üretimi için magma kullanımı[değiştir | kaynağı değiştir]

    İzlanda Derin Sondaj Projesi, İzlanda yüzeyinin altındaki volkanik ana kayadaki ısıyı kontrol altına almak amacıyla birkaç 5.000 milyon delik açarken, 2009 yılında 2.100 metrede bir magma cebine çarptı. Çünkü bu, kayıtlı tarihte yalnızca üçüncü seferdi. Magmaya ulaşıldığında, IDDP deliğe yatırım yapmaya karar verdi ve adını IDDP-1 olarak verdi.

    Magmaya yakın dibinde bir delik bulunan deliğe çimentolu çelik bir kasa inşa edildi. Magma buharının yüksek sıcaklıkları ve basıncı, 36MW güç üretmek için kullanıldı ve IDDP-1'i dünyanın ilk magma destekli jeotermal sistemi haline getirdi.[19]

    Kaynakça[değiştir | kaynağı değiştir]

    Yazı kaynağı : tr.wikipedia.org

    magmanın soğuyup katılaşması ile oluşan katılardır - Eodev.com

    magmanın soğuyup katılaşması ile oluşan katılardır - Eodev.com

    Merhaba,

    Magmanın soğuyup katılaşması ile oluşan katılar püskürük kayaç denir.

    Kayaçlar konusuna kısaca birlikte bakalım:

    Kayaç nedir, kayaçlar mineral topluluklarıdır, ekonomik olarak önemli olan taşlardır.

    1. Kayaçlar üç ana kategoride incelenir.

    - püskürük

    - tortul

    - başkalaşım

    2. Püskürük kayaçlara baktığımızda:

    - Magmanın yeryüzüne çıkması ve daha sonra soğuması ile oluşmuş taşlardır.

    - İç püskürük ve dış püskürük olmak üzere ikiye ayrılır.

    - İç püskürük granit, gabro örnek olarak verilebilir.

    - Dış püskürük andezit, tüf örnek olarak verilebilir.

    3. Tortul kayaçlara baktığımızda

    - Magmanın çıktıktan sonra çeşitli dış etkiler ile etkilenmesi sonucu oluşurlar.

    - Kimyasal, kırıntılı, organik olarak üçe ayrılır.

    - Kimyasala örnek olarak kireçtaşı verilebilir.

    - Kırıntılı kayaçlara örnek olarak kumtaşı verilebilir.

    - Organik kayaçlara antrasit örnek olarak verilebilir.

    6. Başkalaşım kayaçlara baktığımızda

    - mermer örnek olarak verilebilir.

    Kayaçlar konusunda daha önceden cevapladığımız ödevlere bakarak bu konuda daha fazla bilgi sahibi olabilirsiniz:

    Taş kömürü, bazalt, kalker, granit gibi kayaç türleri hangi kayaç türüdür:

    eodev.com/gorev/5558

    Kayaçların oluşumuna göre sıralanışı için:

    eodev.com/gorev/16289

    İç püskürük kayaçlar nelerdir:

    eodev.com/gorev/700094

    Yazı kaynağı : eodev.com

    Yorumların yanıtı sitenin aşağı kısmında

    Ali : bilmiyorum, keşke arkadaşlar yorumlarda yanıt versinler.

    Yazının devamını okumak istermisiniz?
    Yorum yap